Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transcriptional Gene Silencing in Nucleus Shown

09.08.2004


A new gene-silencing technique that takes place in the nucleus of human cells, has been demonstrated by researchers at the University of California, San Diego (UCSD) School of Medicine and the VA San Diego Healthcare System. The technique, called transcriptional gene silencing (TGS), provides a new research tool to study gene function and, if continuing studies prove the concept, it could potentially become a method for therapeutic modification or the expression of disease-producing genes.



Selected for speedy publication in the August 5, 2004 edition of Science Express, the study describes, for the first time, the ability to shut down a gene literally before it is born in the nucleus of a cell. The benefit over previous gene-silencing techniques is that the nuclear version may have the potential to last considerably longer than current methods that act in the cytoplasm, the cellular area outside the nucleus.

The new technique, and older gene-silencing methods that have given rise in recent years to a multi-million dollar pharmaceutical industry, utilizes ribonucleic acid (RNA), the cousin of DNA. Specifically, researchers use synthetic, short pieces of RNA called short interfering RNA (siRNA), to shut down genes. The synthetic versions are patterned after naturally occurring siRNA in the body that may act as a defense against gene sequences that come from viruses or other genetic parasites.


The study’s senior author, David J. Looney, M.D., associate professor of medicine at UCSD and the VA San Diego Healthcare System, said the new technique provides a new tool for research investigation aimed at elucidating the effects of different genes, and has the potential to modify gene expression in disease, such as knocking out expression of genes required for tumor growth. He cautioned, however, that further studies are needed to prove the general applicability of this concept.

An understanding of siRNA begins with a look at theway by which genes work. First, a “promoter” region within the gene must be active in order to allow the genetic information encoded in the DNA to be copied (transcribed) into a single strand of RNA called messenger RNA (mRNA). During normal transcription, the mRNA leaves the nucleus and travels to the cytoplasm of the cell, where it works with another cellular component called the ribosome to make proteins.

Technology developed about four years ago introduced synthetic siRNA into the cytoplasm of cells to silence specific genes. This technique was called post-transcriptional gene silencing (PTGS). However, PTGS is transient, with siRNA lasting only a few days in the cytoplasm. Although this is enough time for short-term research projects, the use of siRNA for therapeutic applications, such as treatment for viral infections like HIV, probably require multiple siRNA treatments or the use of a gene therapy approach.

UCSD researchers used either lentiviral vectors (molecular ferries) to open up the nuclear membrane, or special transfection reagents which direct the transfected synthetic siRNA to the nucleus. This allowed siRNA access to the promoter, where it stopped the first part of the gene-making process called transcription, before it began. Previous research with siRNA used in the nucleus of plants has indicated that this effect can be long lasting, giving rise to the hope that it will be similarly long lasting in humans. Until now, however, scientists have been unable to detect activity of siRNA directed against gene promoters in the nucleus of human cells.

Kevin V. Morris, Ph.D., the study’s first author and a post-doctoral fellow in Looney’s lab, noted that “theoretically, one could envision targeting virtually any gene at the level of the promoter and silencing that gene. This has implications in most biological processes in which one would want to down regulate the expression of a gene, such as those genes involved in virus infections such as HIV, as well as human cancers and certain genetic disorders.”

In continuing studies, the Looney lab and others in the country will investigate this new method’s persistence within the human-cell nucleus, its successful targeting of human promoters, and whether it is feasible to use this technique to inhibit HIV or other viruses.

In addition to Looney and Morris, the authors were Simon W.-L. Chan, Ph.D., UCLA Department of Molecular, Cell and Developmental Biology; and Steven E. Jacobsen, Ph.D., UCLA Department of Molecular, Cell and Developmental Biology, and the UCLA Molecular Biology Institute.

The study was supported by the National Institutes of Health.

| newswise
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>