Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualizing Gene Activity May Provide Insight Into Development

09.08.2004


A technique developed by University of California, San Diego biologists, which uses bright fluorescent dyes to reveal the activity of genes in individual cells of an organism, promises to be a boon to developmental biologists, and may provide new insight into how cancerous tumors begin and grow.



The advance, described in the August 6 issue of Science, allows researchers, for the first time, to simultaneously visualize the activity of multiple genes in the same cell. The combination of genes that are active in a particular cell during development determines that cell’s fate—what type of cell it becomes. The advance also makes it possible to quantify how active a gene is, and even infer the genetic makeup of an organism.

“In addition to facilitating our own research on fruit fly development, there are many potential applications for this technique,” says Ethan Bier, a professor of biology at UCSD who led the research team. “For example, it could be used to understand how tumors arise and grow, by revealing what genes are turned on and when. With this information, it should be possible for cancer biologists to predict how aggressive a tumor will be from its early patterns of gene expression.”


“Cell fate decisions must be understood in order for any of the incredible medical potential of stem cell therapy to be realized,” adds Dave Kosman, a research scientist in the Bier and McGinnis laboratories and lead author on the paper

Multiplex labeling, as the technique is called, uses RNA tagged with a fluorescent molecule to signal that a gene is turned on. When a gene is “on” it produces RNA copies—gene transcripts—of itself. The biologists designed fluorescently-tagged RNA molecules that are complementary to the gene transcripts, and bind to them like Velcro. Therefore a fluorescent beacon reveals the existence and location of the RNA gene copy.

“Multiplex labeling has allowed us to directly map the activation patterns of micro-RNA genes, which were hitherto undetectable,” says William McGinnis, a professor of biology at UCSD and co-principal investigator of the study. “Micro-RNAs were known to be important in development, but this is the first evidence indicating that these genes can control the embryonic body plan.”

Different colored fluorescent molecules can be used to identify transcripts from different genes in the same cell. It works even if one gene is much more active than another, because the amount of fluorescence of each color is quantified separately.

“When using the microscope to measure the fluorescence, the light is fanned out into a rainbow, and each color is read through a separate channel,” explains Bier. “That way if the light is 90 percent blue and ten percent yellow, it might look blue to the naked eye, but the microscope detects each color present.”

According to Bier, multiplex labeling fills a gap in developmental biologists’ toolkit between gene chips, which can identify several hundred gene transcripts at a time, but not their location, and methods that can reveal the identity and location of up to three gene transcripts simultaneously—though not if they are in the same cell. So far the researchers have used multiplex labeling to visualize the activity of up to seven genes at the same time, but they predict it will be possible to increase this to 50.

Newly developed, ultra-bright fluorescent molecules make the multiplex labeling technique possible. The fluorescent molecules were provided by Molecular Probes, Inc., and the company’s scientists also shared their expertise with the UCSD researchers. Developing an effective way to attach the fluorescent molecule to the RNAs complementary to the gene transcripts, and perfecting the overall labeling process were also pivotal in the development of the technique.

“Up until now visualizing gene transcripts has been more art than science,” says Kosman. “There was a lot of trial and error involved. We have developed a reliable technique that is powerful enough to generate a molecular fingerprint of the gene activity in a single cell.”

Bier contrasted the level of detail revealed with multiplex labeling and previous techniques for visualizing gene activity as being akin to “the difference between looking at the stars through a telescope versus binoculars.” The researchers point out that while they have refined the technique in Drosophila embryos, it will likely require modifications to work in other organisms. A detailed guide to the labeling process accompanying the paper, and available through Science’s website, should facilitate the necessary adaptations.

Other UCSD contributors to the paper were Claudia M. Mizutani and Derek Lemons and W. Gregory Cox was a contributor from Molecular Probes, Inc. This research was supported by grants from the National Science Foundation and the National Institutes of Health.

| newswise
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>