Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy: Signals ’Brake’ in Brain Impaired

23.07.2004


To date epilepsy research has mainly concentrated on the transmission of the nerve cell signals to what are known as the synapses. However, recent observations by medical researchers from the US, France and the University of Bonn support the idea that in ’falling sickness’ the signal processing in the nerve cells (neurons) is altered: normally specific ion channels absorb the neuronal activity. In rats suffering from epilepsy, however, this signals brake seems impaired: they have far fewer functioning ion channels than healthy rats. The results are published in the latest edition of the prestigious scientific journal ’Science’ (23rd July, vol. 305, no. 5683). They offer hope of new therapeutic possibilities.

Epilepsy is a common disease: in Germany alone there are 600,000 people whose nerve cells in the brain occasionally switch from healthy chaos to common mode. The result of the uncontrolled mass discharge of neurons is loss of consciousness and spastic convulsions of the muscles, during which those affected can seriously injure themselves. Yet how this synchronised paroxysmic activity develops at the level of nerve cells is still largely a mystery.

Nerve cells are interlinked via a large number of branching networks through which they communicate with each other. Each neuron has a series of dendrites which receive signals from other neurons at what are known as synapses. The cell ’processes’ these incoming signals like a kind of biological microprocessor and transmits as a result electrical pulses via a special projection, the axon, to the dendrites of other neurons. Many epilepsy researchers have up to now assumed that when epilepsy occurs this communication between the cells does not work properly because the transmission of the signals to the synapses is impaired. However, the Bonn researchers in conjunction with their US colleagues and a research team from Marseilles discovered in the case of epileptic rats that the signal processing is not only affected in the synapses but also in the neurons themselves.



The nerve cells are surrounded by a cell membrane. Yet this membrane is not impervious: different kinds of specialised pores ensure that specific charged particles, the ions, can pass through the membrane. Some of these ion channels are permanently open, others only let ’their’ ions through when needed or use energy to ’pump’ them against a concentration gradient. One important ion pore is the Kv4.2 channel, which is permeable for positively charged potassium ions. This channel is mainly located at the signal inputs of a neutron, the dendrites, and has an important function there: it absorbs incoming excitant signals from other nerve cells. They ’trickle away’, so to speak, through the many little ’potassium leaks’; on their journey through the dendrites the pulses therefore level out more and more.

’In rats with what we call a temporal lobe epilepsy some dendrites have far fewer functioning Kv4.2 channels than healthy rats,’ the Bonn epilepsy researcher Professor Heinz Beck explains. There are two reasons for this, the researchers were able to show: on the one hand the genes for the potassium sluice are read less often, with the result that the cells produce fewer Kv4.2 channels. On the other hand a particular enzyme, the ERK or Extra-Cellular Signal-Regulated Kinase, changes the channels present chemically in such a way that they no longer function. The consequence is, Professor Beck adds, that ’since the input signals at the dendrites reach the neuron largely unabsorbed, the rats probably react much more frequently than healthy rats by transmitting an impulse to their signal output, the axon.’ The nerve impulses can therefore multiply more easily; the lack of signal absorbance may thus decisively contribute to the increased excitability of the neurons in chronic epilepsy.

When the teams impeded the ERK with specific substances, the signal response of the nerve cells largely normalised. The findings therefore make it appear possible to discover new therapeutic approaches. ’Admittedly, the ERK has so many tasks to do that there would probably be side-effects if it was impeded directly,’ says Heinz Beck. ’However, the attempt could be made to protect the Kv4.2 channels from ERK attack, or reverse the chemical changes in the channels.’

Professor Heinz Beck | alfa
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>