Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve Cells Successfully Regenerated Following Spinal Cord Injury

15.07.2004


Using a combination of therapies and cell grafts, a team of University of California, San Diego (UCSD) School of Medicine researchers has promoted significant regeneration of nerve cells in rats with spinal cord injury.

The therapeutic approach successfully stimulated new nerve fibers called axons to grow and extend well beyond the site of the injury into surrounding tissue, following surgically induced spinal cord damage.

These results prove that combinational therapy can promote the vigorous growth of new axons even after a complete lesion of the spinal cord cells, with the new growth extending through implanted tissue grafts, and into the spinal cord and healthy tissue surrounding the injury site, according to Mark Tuszynski, M.D., Ph.D., professor of neurosciences at UCSD and senior author of the study. The paper is published in the July 14 issue of the Journal of Neurosciences.



“Previous studies have demonstrated reduced lesion and scarring, tissue sparing and functional recovery after acute spinal cord injury,” said Tuszynski, who also has an appointment with the Veterans Affairs Medical Center, San Diego. “This study shows unequivocally that axons can be stimulated to regenerate into a cell graft placed in a lesion site, and out again, into the spinal cord -- the potential basis for putting together a practical therapy.”

The successful regeneration followed complete lesion of the nerve site. The study, which targeted sensory axons, was not designed to test functional improvement.

Axon regeneration is one of the many challenges confronting spinal cord researchers. The axon is a critical communication path from the nerve cell, with many sensory axons extending from the spine to the brain. When the spine is severely damaged that connection is lost, and gaps form in the healed spine that fill with fluid, an environment that complicates regeneration efforts since axons can’t grow across the lesion cavity. Therefore, to be successful, regeneration therapy must stimulate growth and provide a scaffold that creates an appropriate environment to support axonal growth.

The most dramatic axonal growth seen in the UCSD study was in rats pre-treated with cyclic AMP (cAMP). The team injected cAMP, an important cellular messenger that regulates various metabolic processes, directly into the nerve cell nucleus before creating the lesions. After surgical severance of the spine, the injury site was implanted with a tissue bridge of bone marrow stromal cells and treated with neurotrophins (growth factor). In these rats, over a three-month period significant growth of axons was noted, extending into and beyond the tissue graft. Pre-treatment with cAMP could be a practical approach for treating patients with established, chronic spinal cord injuries, a possibility that is the subject of current study by the UCSD group.

Co-authors of the paper are Paul Lu, Ph.D., UCSD Department of Neurosciences; Leonard Jones Ph.D., UCSD Department of Neurosciences and Veterans Affairs Medical Center, San Diego; and Marie T. Filbin, Ph.D., Biology Department, Hunter College, New York.

The research was supported by the National Institutes of Health, the Veterans Administration, the Canadian Spinal Research Organization, and the Swiss Institute for Research into Paraplegia.

| newswise
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>