Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking Project Will Help Combat Major Diseases

08.07.2004


A groundbreaking European project launched next week and led by the University of Plymouth will help to combat major diseases such as cancer and brain diseases. The four-year project, which involves 31 institutions across Europe, will be launched in Milan on Friday 9 July, when the first workshop takes place.



The projects’ key aim is to tackle and reduce fragmentation in the new field of biopattern and profile analysis. (A biopattern is the basic information ie pattern that provides clues about underlying clinical evidence for diagnosis and treatment of diseases. A bioprofile is a personal fingerprint that fuses together a persons’ current and past medical history, biopattern and prognosis.)

Speaking about the project, Emmanuel Ifeachor, Professor of Intelligent Electronic Systems at the University of Plymouth, said: "The grand vision is to develop a pan-European, coherent and intelligent analysis of an individuals bioprofile; to make the analysis of this bioprofile remotely accessible to patients and clinicians, and to exploit the bioprofile to combat major diseases such as cancer and brain diseases."


Biopattern brings together leading researchers in medical informatics and bioinformatics from academia, the healthcare sector and industry in a new way, harnessing expertise and information to put Europe at the forefront of eHealth. The project aims to identify how bioprofiles could be exploited for individualised healthcare such as disease prevention, diagnosis and treatment.

Leader of the Evaluation Task Force of Biopattern, Dr Elia Biganzoli from the Unit of Medical Statistics and Biometry of the National Cancer Institute, Milan, said: "We are delighted to be hosting the first event for the Biopattern project with partners across Europe."

We see the key benefits of the Biopattern Network of Excellence in the multidisciplinary approach for bioprofile analysis. The synergy from joint efforts of researchers from different fields is needed to offer the EU citizen a realistic perspective of the improvement of patient care trough the exploitation of biopatterns.

For more information, please contact Samantha McKay, Public Relations Assistant, on +44-1752-233981, E-mail: publicrelations@plymouth.ac.uk

Mara Gualandi | CORDIS Wire
Further information:
http://www.plymouth.ac.uk

More articles from Life Sciences:

nachricht Study provides insight into how nanoparticles interact with biological systems
22.10.2018 | Northwestern University

nachricht New technique reveals limb control in flies -- and maybe robots
22.10.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles

22.10.2018 | Ecology, The Environment and Conservation

Superflares from young red dwarf stars imperil planets

22.10.2018 | Physics and Astronomy

Accurate evaluation of chondral injuries by near infrared spectroscopy

22.10.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>