Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

That’s not my hand! How the brain can be fooled into feeling a fake limb

02.07.2004


Scientists have made the first recordings of the human brain’s awareness of its own body, using the illusion of a strategically-placed rubber hand to trick the brain. Their findings shed light on disorders of self-perception such as schizophrenia, stroke and phantom limb syndrome, where sufferers may no longer recognize their own limbs or may experience pain from missing ones.



In the study published today in Science Express online, University College London’s (UCL) Dr Henrik Ehrsson, working with Oxford University psychologists, manipulated volunteers’ perceptions of their own body via three different senses - vision, touch and proprioception (position sense).

They found that one area of the brain, the premotor cortex, integrates information from these different senses to recognize the body. However, because vision tends to dominate, if information from the senses is inconsistent, the brain “believes” the visual information over the proprioceptive. Thus, someone immersed in an illusion would feel, for example, that a fake limb was part of their own body.


In the study, each volunteer hid their right hand beneath a table while a rubber hand was placed in front of them at an angle suggesting the fake hand was part of their body. Both the rubber hand and hidden hand were simultaneously stroked with a paintbrush while the volunteer’s brain was scanned using functional magnetic resonance imaging.

On average, it took volunteers 11 seconds to start experiencing that the rubber hand was their own. The stronger this feeling, the greater the activity recorded in the premotor cortex.

After the experiment, volunteers were asked to point towards their right hand. Most reached in the wrong direction, pointing towards the rubber hand instead of the real hidden one, providing further evidence of the brain’s re-adjustment.

Dr Henrik Ehrsson says: “The feeling that our bodies belong to ourselves is a fundamental part of human consciousness, yet there are surprisingly few studies of awareness of one’s own body.”

“Distinguishing oneself from the environment is a critical, everyday problem that has to be solved by the central nervous system of all animals. If the distinction fails the animal might try to feed on itself and will not be able to plan actions that involve both body parts and external objects, such as a monkey reaching for a banana.

This study shows that the brain distinguishes the self from the non-self by comparing information from the different senses. In a way you could argue that the bodily self is an illusion being constructed in the brain.”

Disorders such as schizophrenia and stroke often involve impaired self-perception where, for example, a woman might try to throw her left leg out of bed every morning because she believes the leg belongs to someone else. Misidentification or unawareness of a limb arising from damage to the premotor cortex from a stroke is not uncommon.

Phantom limb syndrome is a disorder which can arise after amputation. Remedies that trick the brain into believing the limb has been replaced, for example by using a mirror to reflect the opposite healthy limb onto the amputated limb, exploit the brain’s mechanism of self-perception.

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht New Therapy Promotes Vascular Repair Following Stroke
25.06.2019 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

Robocabs: The mobility of the future?

25.06.2019 | Studies and Analyses

Skipping Meat on Occasion May Protect Against Type 2 Diabetes

25.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>