Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving the mind’s eye depends upon an intact eye movement system

04.05.2004


An important aspect of human vision is the ability to attend to objects or events appearing in our peripheral vision without shifting our gaze. This way of effectively looking out of the corner of the mind’s eye is thought to be particularly important for alerting us to danger. Researchers have made the seemingly paradoxical discovery that even though eye movement itself is actually dispensable for such an attention shift, eye muscle function is nevertheless required for this ability to reflexively redirect one’s attention. The new finding tests an important theory about brain function, and represents a remarkable example of the brain’s complex relationship with movement.



The ability to attend to objects or events that are not at the current centre of gaze (e.g., rapid movements which might signal danger) is referred to as the covert orienting of attention. This mechanism can be contrasted with the overt orienting of attention which typically involves the execution of an eye movement (saccade) intended to bring the object of interest into central vision.

In their new work, researchers Daniel Smith, Chris Rorden and Stephen Jackson of the University of Nottingham, UK, address an important question concerning the precise relationship between eye movements and the covert orienting of attention. While some have argued that covert orienting of attention and eye movements are independent of one another, other researchers have supported the so-called "premotor theory" of attention, which holds that covert attention is mediated by the same system that controls saccadic eye movements, and that a covert shift of attention is simply an unexecuted eye movement.


In a novel test of the premotor hypothesis, Smith and colleagues investigated the covert orienting of attention by a woman (AI) who, because of a congenital impairment in the development of her eye muscles (opthalmoplegia), had never been able to make an eye movement, but could read and scan the visual world by making saccadic head movements.

The researchers found that in contrast to individuals who possessed the ability to move their eyes, AI could not reflexively orient her attention in response to the appearance of a salient peripheral cue. Nevertheless she had no problem orienting her attention voluntarily in response to centrally presented direction cues (i.e., an arrow pointing left or right).

The results demonstrate that intact eye movements are necessary for the normal development of reflexive attention. They also show that, contrary to what one might expect, intact brain regions alone are not sufficient for the normal development of attention. Together the new findings provide strong support for the premotor theory of attention.


Daniel T. Smith, Chris Rorden, and Stephen R. Jackson : "Exogenous Orienting of Attention Depends upon the Ability to Execute Eye Movements"

Publishing in Current Biology, Volume 14, Number 9, May 4, 2004.

Heidi Hardman | EurekAlert!

More articles from Life Sciences:

nachricht How to construct a protein factory
19.09.2019 | Universität Bern

nachricht Quality Control in Cells
19.09.2019 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

DGIST achieves the highest efficiency of flexible CZTSSe thin-film solar cell

19.09.2019 | Power and Electrical Engineering

NTU Singapore scientists develop technique to observe radiation damage over femtoseconds

19.09.2019 | Physics and Astronomy

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>