Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretching DNA on a tiny scale, researchers probe the basis for its compaction

23.04.2004


Using magnets and video microscopy to measure the length of individual DNA molecules under experimental conditions, researchers have demonstrated that Condensin, a complex of proteins widely conserved in evolution, physically compacts DNA in a manner dependent on energy from ATP. The finding is significant because the Condensin complex, which is essential for life, has been known to play a key role in the dramatic condensation of genomic DNA that precedes mitosis and cell division. The new work puts into sharper focus the mechanism by which Condensin accomplishes this compaction, which is essential for the precise segregation of the genetic material to later generations of cells.



Scientists Terence Strick, Tatsuhiko Kawaguchi and Tatsuya Hirano of Cold Spring Harbor Laboratory employed a nanomanipulation technique by which small individual molecules of DNA, tethered on one end to a glass slide and attached on the other end to a magnetic bead, could be gently stretched and twisted using small magnets. The technique allowed the researchers to exert controlled, variable force on the extended DNA, directly measuring changes in its compaction following interactions with Condensin complexes isolated from frog eggs. Because the helical DNA could be twisted, the scientists were also able to investigate how DNA topology – in this case, topological states called positive and negative supercoiling – might affect its ability to be compacted by Condensin. Such measurements are central to illuminating the molecular mechanism used by Condensin in the cell.

The researchers found that Condensin compacts DNA against a weak stretching force, but that increasing the force on the DNA reversed compaction, effectively breaking apart the molecular interactions formed by Condensin. Carefully measuring changes in distance between the two ends of the DNA molecule revealed evidence that both compaction and decompaction often occurred in jumps of certain lengths. Comparing the range of these step sizes to the physical dimensions of Condensin complexes, the authors were able to make some informed proposals for how Condensins interact with DNA – for example, by forming large DNA loops that can be popped open by increased stretching force. It remains unclear whether individual Condensin complexes can accomplish this task single-handedly, or whether multiple complexes act cooperatively, but the new findings and techniques employed here establish a solid foundation for further work on such questions.



Terence R. Strick, Tatsuhiko Kawaguchi and Tatsuya Hirano: "Real-time Detection of Single-molecule DNA Compaction by Condensin I"

Published online in Current Biology 22 April 2004. Appearing in print in Current Biology Volume 14, Number 10, 25 May 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>