Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretching DNA on a tiny scale, researchers probe the basis for its compaction

23.04.2004


Using magnets and video microscopy to measure the length of individual DNA molecules under experimental conditions, researchers have demonstrated that Condensin, a complex of proteins widely conserved in evolution, physically compacts DNA in a manner dependent on energy from ATP. The finding is significant because the Condensin complex, which is essential for life, has been known to play a key role in the dramatic condensation of genomic DNA that precedes mitosis and cell division. The new work puts into sharper focus the mechanism by which Condensin accomplishes this compaction, which is essential for the precise segregation of the genetic material to later generations of cells.



Scientists Terence Strick, Tatsuhiko Kawaguchi and Tatsuya Hirano of Cold Spring Harbor Laboratory employed a nanomanipulation technique by which small individual molecules of DNA, tethered on one end to a glass slide and attached on the other end to a magnetic bead, could be gently stretched and twisted using small magnets. The technique allowed the researchers to exert controlled, variable force on the extended DNA, directly measuring changes in its compaction following interactions with Condensin complexes isolated from frog eggs. Because the helical DNA could be twisted, the scientists were also able to investigate how DNA topology – in this case, topological states called positive and negative supercoiling – might affect its ability to be compacted by Condensin. Such measurements are central to illuminating the molecular mechanism used by Condensin in the cell.

The researchers found that Condensin compacts DNA against a weak stretching force, but that increasing the force on the DNA reversed compaction, effectively breaking apart the molecular interactions formed by Condensin. Carefully measuring changes in distance between the two ends of the DNA molecule revealed evidence that both compaction and decompaction often occurred in jumps of certain lengths. Comparing the range of these step sizes to the physical dimensions of Condensin complexes, the authors were able to make some informed proposals for how Condensins interact with DNA – for example, by forming large DNA loops that can be popped open by increased stretching force. It remains unclear whether individual Condensin complexes can accomplish this task single-handedly, or whether multiple complexes act cooperatively, but the new findings and techniques employed here establish a solid foundation for further work on such questions.



Terence R. Strick, Tatsuhiko Kawaguchi and Tatsuya Hirano: "Real-time Detection of Single-molecule DNA Compaction by Condensin I"

Published online in Current Biology 22 April 2004. Appearing in print in Current Biology Volume 14, Number 10, 25 May 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht A microscopic topographic map of cellular function
13.06.2019 | University of Missouri-Columbia

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>