Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Translational repression in germline development

13.01.2004


In many species, the reproductive cells of the germline can only form properly if certain mRNAs are prevented from translating into proteins until they have been transported to precise target locations in the egg and the appropriate developmental stage has been reached. In a study published in the January issue of Developmental Cell, members of the RIKEN Center for Developmental Biology (CDB) Laboratory for Germline Development (Akira Nakamura, Team Leader) report that, in the fruit fly Drosophila, this translational repression is achieved by a newly identified complex formed by three associating proteins.



RNA activity during Drosophila oogenesis involves a number of sequential processes. The Drosophila oocyte share cytoplasm with neighboring nurse cells via an incomplete cell membrane, allowing mRNAs and proteins from the nurse cells to be transported to the oocyte in the form of ribonucleoproteins. Following their export from the nurse cell nuclei, mRNAs are translationally repressed, or ‘masked,’ and transported to specified regions of the oocyte, where they establish fixed and precise localizations and regain their ability to undergo translation. In one example of this critically important regulation, the translation of the RNA for the maternal gene oskar, which has critical functions in embryonic patterning and the formation of germline cells, is repressed during its transport to the posterior pole of the oocyte. This transcript-specific repression is known to be mediated by the protein Bruno, which binds to the 3’ UTR of oskar mRNA, but the underlying mechanisms have remained obscure.

In the Developmental Cell study, the Nakamura lab demonstrated that an ovarian protein, Cup, is another protein required to inhibit the premature translation of oskar mRNA, and that Cup achieves this by binding to a second protein, eIF4E, a 5’ cap-binding general translation initiation factor. The binding with Cup prevents eIF4E from binding with a different partnering molecule, eIF4G, and thereby inhibits the initiation of translation. Findings that a mutant form of Cup lacking the sequence with which it binds eIF4E failed to repress oskar translation in vivo, that Cup interacts with Bruno in a yeast two-hybrid assay, and that the Cup-eIF4E complex associates with Bruno in an immunoprecipitation assay, suggesting that these three proteins form a complex that achieves translational repression by interactions with both the 3’ and 5’ ends of the oskar RNA. A similar model of protein interactions is observed in the translational repression of the cyclin-B1 RNA in the Xenopus African clawed frog, indicating that the paradigm of translational repression through the 5’/3’ interactions is conserved across species.


Nakamura next intends to look into the means by which the repressor effects of the eIF4E-Cup-Bruno complex are alleviated at the appropriate developmental stage, after the oskar ribonucleoprotein complex has reached and anchored to its appropriate destination at the pole of the oocyte.

Doug Sipp | EurekAlert!
Further information:
http://www.cdb.riken.go.jp/english/index.html

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>