Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers Determine Mechanism For Degradation of G Proteins

23.07.2003


Researchers at the University of California, San Diego (UCSD) School of Medicine have identified a previously unknown component of the body’s cellular garbage disposal called the ubiquitin system, which is responsible for regulation of cell function by removal of abnormal and unneeded proteins.

Published in the July 8, 2003 issue of Proceedings of the National Academy of Sciences, the study provides the first description of a molecule called GAIP interacting protein N terminus (GIPN) that plays a key role in the degradation of G proteins, which are switches that turn activities on or off in the cell.

Senior author Marilyn Farquhar, Ph.D., a UCSD professor and chair of the Department of Cellular and Molecular Medicine, noted the findings should be of interest to the pharmaceutical industry since G proteins regulate everything from hormone secretion to the beating of the heart.



The researchers found that GIPN appears to specifically target G proteins for degradation and thereby regulates G protein signaling by controlling the amount of G protein expressed in the cell. This occurs via GIPN binding to the N terminus of G alpha interacting proteins (GAIP), which is the mechanism that sets the ubiquitin system in motion.

The ubiquitin system is used extensively by the cell for the turnover and degradation of proteins in both the cytoplasm, the material surrounding the nucleus, and in cell membranes. Ubiquitin, itself, is a small peptide tag that marks a protein for destruction. The interaction of GIPN and GAIP, which was also discovered by the UCSD team, is part of the machinery that places the little ubiquitin tag on a protein.

A source of study by numerous research labs, the ubiquitin system is crucial for nearly every significant activity in the cell. Although this system of protein turnover was first identified in the 1930s, the molecular mechanisms responsible for the process have remained largely unknown.

Ubiquitin-mediated degradation of proteins plays an important role in the control of numerous processes, such as the way in which extracellular materials are incorporated into a cell, the movement of biochemical signals from the cell membrane, and the regulation of cellular functions such as transcriptional on-off switches. The ubiquitin system has been implicated in the immune response and development. Abnormalities in the system are known to cause pathological conditions, including malignant transformation.

"As usual with scientific projects like this one, you have to go much more into the details of the mechanism," Farquhar said. "We have a number of experiments now underway to firm up the precise mechanism."

"Discovery is finding something new—in this case, a new protein; then, it takes a long time to work out the biology," she added.

The co-first authors of the PNAS paper are Thierry Fischer, Ph.D., an assistant project scientist in Farquhar’s laboratory, and Luc De Vries, Ph.D., a former UCSD post-doctoral student who currently works at the Institut de Recherche Pierre Fabre CRPF, Castres Cedex, France. An additional contributor to the study is Timo Meerloo, B.S., a UCSD research specialist.

The study was funded by the National Institutes of Health.

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>