Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain stem cells are not rejected when transplanted

14.07.2003


Findings could improve retinal and other nervous system transplants



For the first time scientists have shown that brain stem cells are immune privileged, which means that they are invisible to a transplant recipient’s immune system and do not trigger the immune system to reject them. These results, published in the July issue of Stem Cells, indicate that using central nervous system stem cells in transplants for diseases of the eye (which is part of the brain), brain, and spinal cord, may eliminate the need for tissue typing before, and immunosuppressive drugs after, transplantation. Ultimately these findings promise to improve the success of retinal transplantation to regenerate vision for millions with macular degeneration, retinitis pigmentosa and diabetic retinopathy and brain transplants to restore functioning for patients with disorders such as Parkinson’s disease.

"These findings are very exciting," says Michael Young, PhD, the lead author of the study and an assistant scientist at Schepens Eye Research Institute and assistant professor at Harvard Medical School. "Though we suspected brain stem cells might be protected in this way, this is the first documented evidence."


Most tissues when transplanted from one body to another are seen by the recipient as foreign and attacked by the immune system. This is because the transplanted tissue has molecules on its surface called antigens that are recognized by the immune system as "not self." If the immune response goes unchecked by drugs to inhibit the attack, it will eventually destroy the transplanted tissue and reject it.

There are sites in the body that do not mount attacks against foreign tissue because to do so would be too self-destructive. For instance, in the eye an all out immune attack would cause inflammation that would destroy delicate tissue and, with it, vision. These sites, which are known as "immune privileged," include the eye, the brain, the digestive system, and the reproductive system.

Young, who in previous research found that brain and retinal stem cells transplanted into the eyes of mice and rats seemed to survive longer and integrate more easily into damaged retinas than other cells, suspected that these "neural stem cells" might be immune privileged. The only way for him to learn the true nature of their immune properties was to transplant these neural stem cells to a part of the recipients body that, unlike the eye, was not immune privileged already.

He and his colleagues chose a part of the body that always rejects transplanted tissue without immunosuppressant drugs and without close tissue typing – the kidney capsule, the pouch in which the kidney is located. This pouch is commonly used to determine whether transplants can survive. Over the years scientists have tested skin, cornea and other tissues in the kidney capsule to evaluate their transplant potential.

Young and his colleagues took brain stem cells from green mice (mice in which the gene for green protein found in jellyfish has been inserted) and placed them under the kidney capsule in other normal non-green mice. After 4 weeks, the team examined the mice and found that the stem cells had not been rejected in any of the mice, and, in fact, had grown into neural tissue.

They concluded that these neural stems cells did not induce an immune response and must be invisible to the immune system, at least initially. The next step was to determine if the cells possessed the antigens that most other tissues had. To test this theory, the team took other brain cells (not stem cells) from the green mice and implanted them in the normal non-green mice. These cells were rejected, and when brain stem cells were then again implanted in the normal non-green mice, they, too were rejected. The team concluded, therefore, that the brain stem cells did possess antigens, but unless the recipient was primed or pre-immunized, the antigens were not visible to the immune system of the recipient and not rejected.

"Understanding the immune properties of these stem cells could have an enormous effect on how we perform brain or retinal transplantations in the future. Stem cells already have the advantage of being able to transform or differentiate into various types of cells and can be reproduced endlessly outside the body. Now we know that at least brain stem cells are immune privileged and can be used without the same worry about tissue matching or immunosuppression that is true for other types of tissue. Young is the director of Schepens Eye Research Institute’s Minda de Gunzburg Retinal Transplantation Research Center. The center is committed, with a focus on retinal regeneration, to unlocking the mysteries of vision and finding the cures for blinding eye diseases that devastate millions in the United States and around the world.

The study, titled "Neural progenitor cells lack immunogenicity and resist destruction as allografts" can be obtained at the Stems Cells website at http://stemcells.alphamedpress.org/ or by emailing pattijacobs@hotmail.com or mikey@vision.eri.harvard.edu.

Other members of the research team include Junko Hori, Tat Fong Ng, Marie Shatos, and J. Wayne Streilein of Schepens Eye Research Institute of Boston and Henry Klassen of the Stem Cell Research Program at Children’s Hospital of Orange County in Orange, California.


###
Schepens Eye Research Institute is an affiliate of Harvard Medical School and is the largest independent eye research institute in the world.


Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu/
http://stemcells.alphamedpress.org/

More articles from Life Sciences:

nachricht Selectively Reactivating Nerve Cells to Retrieve a Memory
01.06.2020 | Universität Heidelberg

nachricht CeMM study reveals how a master regulator of gene transcription operates
01.06.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>