Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harry Potter and the Ecuadorian flowers

24.06.2003


A new species of the gentian family gets a Potteresque name



Harry Potter’s influence pervades even the science of plant taxonomy at Rutgers, The State University of New Jersey. Lena Struwe, assistant professor of ecology, evolution and natural resources at Rutgers’ Cook College – and a fan of the fictional young wizard – has shared in the discovery of a rare, new jungle plant that now bears a Potteresque name.

The new species, Macrocarpaea apparata, is described by Struwe and Jason Grant of the Université de Neuchâtel in Switzerland in the June 27 issue of Harvard Papers in Botany [8(1): 61-81, 2003]. The species name, apparata, is drawn from the term "to apparate" – as in apparition – a verb used throughout the book, Harry Potter and the Chamber of Secrets. The author, J.K. Rowling, uses it to refer to a wizard’s ability to disappear and reappear elsewhere instantaneously.


In an effort to conserve the world’s deteriorating biodiversity, plant taxonomists investigate and describe what is known to exist and go out in the field to look for new species. Struwe and Grant have been exploring the shrinking rain forests of South America, most recently the tropical, mountainous Andes region in southern Ecuador.

"Much of the original forest is now gone because trees have gone to lumber and vegetation has been burned to clear pastureland," said Struwe. "In Ecuador alone, a recent estimate is that 83 percent of all plant species are threatened with extinction, a much higher percentage than we previously thought."

The newly discovered plant belongs to the gentian family, whose members are known for their deep blue flowers. They are found on all continents except Antarctica in a wide variety of habitats and have been valued as herbal remedies since the dawn of recorded history. One particular genus, Macrocarpaea, is found predominantly in the mountainous rain forests of America, and it was these that in 2001 the two scientists sought in Ecuador.

"We drove south through misty mountains and lush vegetation, stopping at many places to examine the flora," said Struwe. "Suddenly we saw strange plants growing by the roadside. They had none of the flowers characteristic of gentians, but they did look like a Macrocarpaea – a kind never before seen."

Struwe explained that in order to confirm that it was a gentian, they needed to find a plant with flowers. As darkness approached, the rain-soaked botanists pursued their quarry and, on the verge of giving up, they found it. "At the very last moment, a tall flowering plant suddenly, almost magically appeared in front on us," she said. "It was a small tree, 12-15 feet tall, full with yellowish-white, bell-shaped flowers adapted to nocturnal pollination by bats and moths," added Grant.

The flowers emerged only as darkness fell, almost as an apparition. Thus, Struwe and Grant settled quickly on the species name, apparata.

Struwe had previously identified a new gentian genus in Brazil – Aripuana – and a dozen new gentian species, while Grant has more than 20 new species of Macrocarpaea to his credit. The research described in the June 27 paper was funded by the New York Botanical Garden, Rutgers University and the Université de Neuchâtel, Switzerland.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>