Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assumptions about what holds molecular complexes together have been based on faulty measures

16.05.2003


As scientists create molecular complexes to perform increasingly minute operations -- such as molecular level switches or memory devices -- it is critical that the association forces that hold the molecular components together be accurately understood.



But measurements of association constants are often not accurate, according to an article by Virginia Tech Ph.D. student Jason Jones and chemistry professor Harry W. Gibson, published in May 15, 2003 online issue of the Journal of the American Chemical Society ("Ion Pairing and Host-Guest Complexation in Low Dielectrict Constant Solvents," scheduled for print on June 25, 2003).

Designing molecules that switch on and off or that attach to a material to transport it and then release it at some external signal, requires a complexation (or connection) process that is reversible. Fine control of reversible complexation processes requires precise understanding of the attractive forces that hold two or more molecules together in the supramolecular assembly.


Gibson and his students began to take a closer look at how association constants (Ka) are determined in the molecular complexes they were building when Ka measurements did not match those in the literature.

Using a simple host-guest system known as a pseudorotaxane, large cyclic host molecules were allowed to interact with linear guest molecule to create a supramolecular threaded complex. The host and guest are bound by electrostatic forces, primarily hydrogen bonding. Since the guest systems are salts, in low-polarity solvents "The attraction between positive and negative ions means that the salt species are predominantly intimately ion-paired but not entirely," says Gibson.

In Chemistry 101, A+B=C. "If you know how much of each species -- hosts (H) and guests (G) -- you have, then you can predict how much of the complex (C) you will get -- if you also know Ka -- the association constant," says Gibson.

Ka = C divided by (A)(B) where A = the H you started with minus C (H0-C) and B = the G you started with minus C (G0-C). [Ka = C / (H0-C) (G0-C)]

However, that only works if the guest molecules and the complex are ion-paired to the same extent, says Gibson. And that does not happen.

The researchers developed equations for determining Ka when the extents of ion-pairing were different and tested them. "It requires more work and more data," says Gibson. "But in order to make functional materials using supramolecular chemistry, you have to have as high a Ka as possible. Now that we know more about the individual steps and factors involved, we have been able to build better supramolecular arrangements."

Jones has been able to increase Ka 50-fold in recent work(presented to the American Chemical Society in March 2003). An increased understanding of bonding dynamics will allow the development of innovative molecular level materials, such as molecular motors and molecular memory devices.



Contact for more information: Harry W. Gibson, 540-231-5902, hwgibson@vt.edu


PR CONTACT at Virginia Tech: Susan Trulove, 540-231-5646, STrulove@vt.edu

Harry W. Gibson | EurekAlert!
Further information:
http://www.chemistry.vt.edu/chem-dept/gibson/Gibson/gibson.htm
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>