Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assumptions about what holds molecular complexes together have been based on faulty measures

16.05.2003


As scientists create molecular complexes to perform increasingly minute operations -- such as molecular level switches or memory devices -- it is critical that the association forces that hold the molecular components together be accurately understood.



But measurements of association constants are often not accurate, according to an article by Virginia Tech Ph.D. student Jason Jones and chemistry professor Harry W. Gibson, published in May 15, 2003 online issue of the Journal of the American Chemical Society ("Ion Pairing and Host-Guest Complexation in Low Dielectrict Constant Solvents," scheduled for print on June 25, 2003).

Designing molecules that switch on and off or that attach to a material to transport it and then release it at some external signal, requires a complexation (or connection) process that is reversible. Fine control of reversible complexation processes requires precise understanding of the attractive forces that hold two or more molecules together in the supramolecular assembly.


Gibson and his students began to take a closer look at how association constants (Ka) are determined in the molecular complexes they were building when Ka measurements did not match those in the literature.

Using a simple host-guest system known as a pseudorotaxane, large cyclic host molecules were allowed to interact with linear guest molecule to create a supramolecular threaded complex. The host and guest are bound by electrostatic forces, primarily hydrogen bonding. Since the guest systems are salts, in low-polarity solvents "The attraction between positive and negative ions means that the salt species are predominantly intimately ion-paired but not entirely," says Gibson.

In Chemistry 101, A+B=C. "If you know how much of each species -- hosts (H) and guests (G) -- you have, then you can predict how much of the complex (C) you will get -- if you also know Ka -- the association constant," says Gibson.

Ka = C divided by (A)(B) where A = the H you started with minus C (H0-C) and B = the G you started with minus C (G0-C). [Ka = C / (H0-C) (G0-C)]

However, that only works if the guest molecules and the complex are ion-paired to the same extent, says Gibson. And that does not happen.

The researchers developed equations for determining Ka when the extents of ion-pairing were different and tested them. "It requires more work and more data," says Gibson. "But in order to make functional materials using supramolecular chemistry, you have to have as high a Ka as possible. Now that we know more about the individual steps and factors involved, we have been able to build better supramolecular arrangements."

Jones has been able to increase Ka 50-fold in recent work(presented to the American Chemical Society in March 2003). An increased understanding of bonding dynamics will allow the development of innovative molecular level materials, such as molecular motors and molecular memory devices.



Contact for more information: Harry W. Gibson, 540-231-5902, hwgibson@vt.edu


PR CONTACT at Virginia Tech: Susan Trulove, 540-231-5646, STrulove@vt.edu

Harry W. Gibson | EurekAlert!
Further information:
http://www.chemistry.vt.edu/chem-dept/gibson/Gibson/gibson.htm
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>