Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley Scientists Create First 3-D Map of Protein Universe

20.02.2003


The universe has been mapped! Not the universe of stars, planets, and black holes, but the protein universe, the vast assemblage of biological molecules that are the building blocks of living cells and control the chemical processes which make those cells work. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley have created the first three-dimensional global map of the protein structure universe. This map provides important insight into the evolution and demographics of protein structures and may help scientists identify the functions of newly discovered proteins.



Sung-Hou Kim, a chemist who holds a joint appointment with Berkeley Lab’s Physical Biosciences Division and UC Berkeley’s Chemistry Department, led the development of this map. An internationally recognized authority on protein structures, he expressed surprise at how closely the map, which is based solely on empirical data and a mathematical formula, mirrored the widely used Structural Classification System of Proteins (SCOP), which is based on the visual observations of scientists who have been solving protein structures.

"Our map shows that protein folds are broadly grouped into four different classes that correspond to the four classes of protein structures defined by SCOP," Kim says. "Some have argued that there are really only three classes of protein fold structures but now we can mathematically prove there are four."


Protein folds are recurring structural motifs or "domains" that underlie all protein architecture. Since architecture and function go hand-in-hand for proteins, solving what a protein’s structure looks like is a big step towards knowing what that protein does.

The 3-D map created by Kim and his colleagues is described in the February 17, 2003 edition of the Proceedings of the National Academy of Sciences. It shows the distribution in space of the 500 most common protein folds as represented by points which are spatially separated in proportion to their structural dissimilarities. The distribution of these points reveals a high-level of organization in the fold structures of the protein universe and shows how these structures have evolved over time, growing increasingly larger and more complex.

"When the structure of a new protein is first solved, we can place it in the appropriate location on the map and immediately know who its neighbors are and its evolutionary history which can help us predict what its function may be," Kim says. "This map provides us with a conceptual framework to organize all protein structures and functions and have that information readily available in one place."

With the completion of a "working draft" of the human genome in which scientists determined the sequences of the three billion DNA bases that make up the human genome, the big push now is to identify coding genes and the molecular and cellular functions of the proteins associated with them. Coding genes are DNA sequences that translate into sequences of amino acids which RNA assembles into proteins.

The prevailing method for predicting the function of a newly discovered protein is to compare the sequence of its amino acids to the amino acid sequences of proteins whose functions have already been identified. A major problem with relying exclusively on this approach is that while proteins in different organisms may have similar structure and function, the sequences of their amino acids may be dramatically different.

"This is because protein structure and function are much more conserved through evolution than genetically based amino acid sequences," Kim says.

Kim has been a leading advocate for grouping proteins into classes on the basis of their fold structures and using these structural similarities to help predict individual protein functions. While the protein universe may encompass as many as a trillion different kinds of proteins on earth, most structural biologists agree there are probably only about ten thousand distinctly different types of folds.

"A smaller number of new protein folds are discovered each year despite the fact that the number of protein structures determined annually is increasing exponentially," Kim says. "This and other observations strongly suggests that the total number of protein folds is dramatically smaller than the number of genes."

The rationale behind this idea is that through the eons, proteins have selectively evolved into the architectural structures best-suited to do their specific jobs. These structures essentially stay the same for proteins from all three kingdoms of life -- bacteria, archaea, and eukarya -- even though the DNA sequences encoding for a specific type of protein can wildly vary from the genome of one organism to another, and sometimes even within the same organism.

In the map created by Kim and his colleagues, elongated groups of fold distributions approximately corresponding to the four SCOP structural classifications can be clearly seen. These classifications, which are based on secondary structural compositions and topology are the "alpha" helices, "beta" strands, and two mixes of helices and strands, one called "alpha plus beta" and the other "alpha slash beta." The Berkeley map reveals that the first three groups share a common area of origin, possibly corresponding to small primordial proteins, while the "alpha slash beta" class of proteins does not emerge until much later in time.

"It is conceivable that, of the primordial peptides, those containing fragments with high helix and/or strand propensity found their way to fold into small alpha, beta, and alpha plus beta structures," Kim says. "The alpha slash beta fold structures do not appear until proteins of sufficient size rose through evolution and the formation of supersecondary structural units became possible."

Since understanding the molecular functions of proteins is key to understanding cellular functions, the map developed by Kim and his colleagues holds promise for a number of areas of biology and biomedical research, including the design of more effective pharmaceutical drugs that have fewer side-effects.

"This map can be used to help design a drug to act on a specific protein and to identify which other proteins with similar structures might also be affected by the drug," Kim says.

For the next phase of this research, Kim and his colleagues plan to tap into the supercomputers at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) to add the rest of the some 20,000 and counting known protein structures to their map. They also plan to set up a Website where researchers can submit for inclusion new protein structures they have solved.

Working with Kim on this protein universe mapping project have been Jington Hou, Gregory Sims, and Chao Zhang. The protein was funded by grants through the National Science Foundation and the National Institutes of Health.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our Website at www.lbl.gov/.


Additional Information

Sung-Hou Kim can be reached at (510)486-4333 or by e-mail at SHKim@lbl.gov

His Website can be visited at
http://www-kimgrp.lbl.gov/

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov/Science-Articles/Archive/PBD-Universe-map-Kim.html
http://www-kimgrp.lbl.gov/
http://www.berkeley.edu/news/media/releases/2003/02/18_table.shtml

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>