Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The nucleus: Not just a bag of chromosomes

17.02.2003


Educators and scientists should discard the idea that a cell’s nucleus is just a bag of chromosomes, according to Johns Hopkins’ cell biologist Kathy Wilson, Ph.D. In a Feb. 17 session at the annual meeting of the American Association for the Advancement of Science (AAAS) in Denver, Wilson and five others will introduce visual evidence of the nucleus’s newly recognized importance.


Frog Nuclei



"The old view is that the nucleus is simply a warehouse for chromosomes," says Wilson, associate professor of cell biology in the Johns Hopkins School of Medicine’s Institute for Basic Biomedical Sciences. "But new research and imaging techniques show that the nucleus is really the cell’s mothership, a crucial and very active source of information, support and control."

It’s not too surprising that the nucleus itself has been overshadowed by the easy-to-see reams of genetic material and the fascinatingly tiny machinery that loosens, prepares, reads and copies genes. But in the last 10 or 15 years, evidence has mounted that these interior processes are actively linked to the nucleus, not just randomly taking place inside it, says Wilson, also chair of the public information committee of the American Society for Cell Biology, which helped organize the session.


Wilson and others, for example, are investigating rope-like nuclear proteins called lamins, which form networks throughout the nucleus. A few years ago, scientists discovered that mutations in the gene for "A-type" lamins cause Emery-Dreifuss muscular dystrophy, the third most common of the muscle-wasting disorders.

"That changed everything," says Wilson. "Until then, it was difficult to get federal funding to study lamins -- they were seen as boring. However, once they were linked to a human disease, scientists inside and outside the field appreciated that these proteins are doing unexpected, unexplained things."

Subsequently, lamin A has been linked to five other diseases, affecting the skeleton, heart, brain and fat, notes Wilson.

Beyond lamins, there’s an emerging revolution in understanding cell division, says Wilson. While the general cycle is well understood -- chromosomes are copied and then pulled to opposite ends of the cell, and the cell splits in two -- the details are still fuzzy. For one, the chromosomes are inside the nucleus, but the machinery that pulls them to one side or the other is outside the nucleus.

"The nucleus itself has to disappear before the cell can divide, and everyone thought that it just fell apart," says Wilson. "But recent evidence shows that its breakdown is an orchestrated process similar to the pulling apart of the chromosomes. It seems to involve the same structures and the same tiny motors. It’s almost a practice run for moving the chromosomes."

Wilson notes that no college textbook yet reflects current understanding of the nucleus.

"Scientists studying the nucleus have just reached the point where we’ve discovered enough to talk about the bigger picture and how our seemingly separate areas overlap," she adds. "But it’s really important to develop an integrated view of the nucleus."

That’s one goal of the AAAS session, she notes. The scientists will present recent advances in six areas, including the disassembly of the nucleus during cell division, lamins, links between the nucleus and disease, implications of the "new" nucleus in gene therapy, and the structure and function of "pores" in the nuclear membrane. The best part of the session, Wilson says, is that there will be lots of "cool pictures."

In addition to Wilson, scheduled presenters are Andrew Belmont of the University of Illinois, Robert Goldman of Northwestern University School of Medicine, Howard Worman of Columbia University College of Physicians and Surgeons, Brian Burke of the University of Florida, and Douglass Forbes of the University of California at San Diego. Tim Richardson of the Toronto Hospital for Sick Children is producing video of various nuclear processes for the session.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/Images/images/frognuclei.jpg
http://www.aaas.org
http://www.ascb.org

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>