Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-Iowa scientists gain insight on how enzyme uses oxygen to produce useful chemicals

14.02.2003


When it comes to visual entertainment, three-dimensional viewing can be quite eye-opening. So, too, in science where a recent finding involving University of Iowa researchers used three-dimensional imaging to understand how a bacterial enzyme can take oxygen from air and use it to convert certain molecules into useful chemicals.



Specifically, the scientists saw that naphthalene dioxygenase, a bacterial enzyme, can bind oxygen (to iron) in a side-on fashion and add it on to naphthalene, a hydrocarbon molecule. The discovery is a result of the first three-dimensional imaging of naphthalene dioxygenase, a member of the family of enzymes called Rieske dioxygenases. The findings could help lead to the development of microorganisms that can clean up toxic and cancer-causing waste in the environment and to the development of novel drugs. The research results appear in the Feb. 14 issue of Science.

"The more we know about how enzymes catalyze reactions, the better able we are to modify them -- to improve or stop reactions, as desired" said S. Ramaswamy, Ph.D., UI professor of biochemistry and one of the study’s authors.


"The question was: how does the enzyme actually work at the molecular level?" said David Gibson, Ph.D., UI professor of microbiology and one of the study’s authors, whose previous research led to the discovery of the Rieske dioxygenase family of enzymes.

That seemingly straightforward question required seven years of collaborative work between the UI and the researchers in Sweden, beginning in 1996, and included assistance from the UI Center for Biocatalysis and Bioprocessing.

Ramaswamy and Gibson began research related to this investigation when Ramaswamy was a faculty member in the molecular biology department at Swedish University of Agricultural Sciences in Uppsala, Sweden. The paper’s lead author is Andreas Karlsson, who was a graduate student of Ramaswamy’s at the Swedish University and currently works for Aventis in Paris.

"People always thought that side-on binding of oxygen to iron existed, but no one had ever seen it in this enzyme or any other catalyst," said Ramaswamy, whose contribution to the project focused on how oxygen specifically binds to iron in the enzyme. Side-on refers to the newly visualized orientation of oxygen as it binds to iron.

The team used X-ray crystallography to determine the three-dimensional structure of the enzyme and then embarked on a series of experiments designed to take snapshots of the enzyme as it catalyzed the reaction, Gibson explained.

In all, the team had to analyze information from nearly 400 crystals in order to focus on five particular snapshots that led to the finding. The approach was revealing.

"Those five three-dimensional snapshots were the most relevant in understanding this side-on mechanism," Ramaswamy said. "Although we could not watch the reaction occur, the snapshots allowed us to see key points of the process."

Gibson likened the improved view to being able to "walk inside a molecule," just as one can walk inside a house and see the layout. By seeing how things are arranged within a molecule, scientists can better predict how to make changes to the structure and thus create desired reactions.

The researchers said the particular finding of their investigation suggests that other oxygen-using enzymes may also use a side-on binding mechanism. Thus, the study approach and results likely will impact how scientists investigate other enzymes of interest.

Scientists use a "lock and key" analogy to describe enzyme actions. In this study, naphthalene dioxygenase (enzyme) is a lock and naphthalene (substrate) is a key. For a reaction to occur between the two, the lock and key need to be complimentary.

"The thought was that there was one key and one lock, but now we are finding out that there can be many keys, or substrates, because we have the ability to go in and make a change to the lock, or enzyme," Gibson said.

"We can use this knowledge to engineer enzymes to do reactions and target other substrates in an effort to create new products or prevent other products from being created," Ramaswamy said.

For example, Gibson said, naphthalene dioxygenase is a key component in the development of the environmentally benign blue dye Indigo. In addition, a related Rieske dioxygenase synthesizes a key precursor in the production of Crixivan, an inhibitor of the AIDS virus.

The research team also included Juanito Parales, UI research assistant in microbiology; Rebecca Parales, Ph.D., UI research scientist in microbiology, and Hans Eklund, Ph.D., a faculty member at Swedish University of Agricultural Sciences.



Funding for the project included National Institutes of Health grants awarded to Ramaswamy and Gibson, a Swedish Research Council for Environment award to Ramaswamy and Eklund and a Swedish Research Council award to Eklund.

STORY SOURCE: University of Iowa Health Science Relations, 5141 Westlawn, Iowa City, Iowa 52242-1178

CONTACT: (media) Becky Soglin, 319-335-6660, becky-soglin@uiowa.edu


Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu/

More articles from Life Sciences:

nachricht Lab-free infection test could eliminate guesswork for doctors
26.02.2020 | University of Southampton

nachricht MOF co-catalyst allows selectivity of branched aldehydes of up to 90%
26.02.2020 | National Centre of Competence in Research (NCCR) MARVEL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>