Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover "time for bed" molecules

23.01.2003

Animals lacking molecules called cryptochromes have abnormal sleeping patterns because their internal biorhythms are disrupted. New research from scientists at Stanford University, the University of North Carolina and SRI International published in the open access journal, BMC Neuroscience shows that mice lacking these molecules also respond differently to sleep deprivation. This suggests that cryptochromes are also involved in sleep homeostasis, the process by which we feel tired after we have been awake for a long time.

Sleep is regulated in mammals in two ways. Firstly, it is controlled by an internal body clock, which in humans makes us feel tired at night and awake during the day. Secondly there is a tendency for animals deprived of sleep to feel tired and sleep longer following prolonged wakefulness. This is due to a process called sleep homeostasis, which tries to maintain a balance between time spent awake and time spent asleep.

Molecules known as cryptochromes are known to be involved in the generation of the natural rhythms of the body clock, but it is not clear if they are involved in the regulation of sleep after a period of wakefulness. Stanford scientists Dale Edgar, Jonathan Wisor and colleagues have now investigated the regulation of sleep in mice that are unable to produce functional cryptochrome molecules.

Mice are a nocturnal species that tend to sleep during the day and be awake at night. Mutant mice that lack the cryptochrome genes do not show a preference for sleep at night, which suggests that their body clocks are broken. To investigate the response of these mice to sleep deprivation the researchers continually woke mice up for six hours with gentle handling or by the introduction of an unfamiliar object into their cage.

The response of the mutant mice to being kept awake was quite different to normal mice. The researchers were able to measure both the intensity and length of non-REM sleep following sleep deprivation by measuring brain waves in a technique known as electroencephalography. After six hours of sleep deprivation normal mice showed a characteristic increase in the duration of sleep as regulated by homeostasis. However, mutant mice lacking cryptochromes did not exhibit increases in the duration of non-REM sleep following sleep deprivation.

These results led researchers to conclude that mice lacking cryptochromes can be used a model organism to gain a deeper understanding about the ways in which sleep is regulated. Further understanding of the process of sleep regulation is exciting as the disruption of normal sleeping patterns is a common symptom in a variety of illnesses ranging from arthritis to Parkinson’s disease as well a being very common in sufferers of depression.

Gordon Fletcher | BioMed Central
Further information:
http://www.biomedcentral.com
http://www.biomedcentral.com/content/pdf/1471-2202-3-20.pdf

More articles from Life Sciences:

nachricht Research on TGN1412 – Fc:Fcγ receptor interaction: Strong binding does not mean strong effect
23.04.2019 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>