Virus Attack with Molecular Trojan Horse

In the latest January 10th issue of Cell, a discovery is published by Barends et al. of Leiden University about the artful way by which an infecting plant virus succeeds in conquering the protein factories (ribosomes) of a host cell for subsequent enforced production of viral proteins. To this aim, the virus uses a molecular ’Trojan Horse’ mimicking the shape of transfer RNA, the regular molecular ’van’ for the delivery of amino acids as protein building-stones into those factories.

In the case of Turnip Yellow Mosaic Virus, the transfer-RNA mimic appears to have also smuggled the complete viral RNA in its cargo, with a coercive programme for the production of the viral replicase enzyme. As a result of the replicase action, many new copies of virus RNA are generated in the interior of the host cell for subsequent production of a load of new virus particles. Also other RNA viruses might deploy a comparable ’Trojan Horse’ in their molecular ’struggle for life’.

From a philosophical point this novel mechanism may also inspire to further image forming about the molecular evolution of ribosomal protein synthesis at the genesis of primordial life from an RNA world.

Media Contact

Dr. Barend Kraal alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors