Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find enzyme that triggers hardening of the arteries

21.01.2003


An enzyme found only in the liver and intestines may play a crucial role in the development of hardening of the arteries -- or atherosclerosis, a research team from Wake Forest University Baptist Medical Center and the University of California, San Francisco, report in the Proceedings of the National Academy of Sciences.



The narrowing of arteries through atherosclerosis is a major contributor to heart attacks and strokes.

The confirmation of the relationship between the enzyme, ACAT2, and low density lipoproteins (LDL -- the bad cholesterol) may point to a new way of treating hardening of the arteries.


"Our results support the rationale of pharmacological inhibition of ACAT2 as a possible therapy for atherosclerosis," said Lawrence L. Rudel, Ph.D., professor of comparative medicine and biochemistry at Wake Forest.

Rudel and his colleagues said the study demonstrates that ACAT2 was "crucial for the development of atherosclerosis in mice." The work was all done in mice from an atherosclerosis susceptible strain, because mice are the only animals that can be genetically modified to test the disease process. Knockout mice were developed that were missing the gene that makes ACAT2, and therefore had almost none of the enzyme. These mice were compared to controls that had normal levels of ACAT2.

"The absence of ACAT2 in the small intestine and liver almost completely prevented the development of atherosclerosis," they said. "These studies implicate ACAT2 activity as a major determinant of susceptibility to atherosclerosis."

They found that total cholesterol levels were nearly 2 1/2 times lower in the knockout mice than in the control mice.

Ordinarily, said Rudel, some cholesterol is modified so that it can be transported from the liver to the body’s tissues. The ACAT2 enzyme performs the modification by attaching a fatty acid to the cholesterol molecule, creating a cholesterol ester called cholesterol oleate. Cholesterol oleate is what accumulates in the arteries in atherosclerosis.

The researchers said that mice with ACAT2 had 3 1/2 times more cholesterol esters in blood as the mice without ACAT2. Mice without ACAT2 also absorbed less cholesterol from the intestines, and gallstone formation was limited. Circulating lipoproteins in these mice contain primarily triglycerides rather than the cholesterol esters.

The ACAT2 deficiency also triggered a compensatory increase in HDL, the good cholesterol.

The researchers noted that monkeys with elevated ACAT2 in the liver have increased susceptibility to atherosclerosis.

The results suggest that pharmaceuticals that inhibit ACAT2 "may be the most desirable to study in humans," Rudel said. "Whether alterations in ACAT2 activity influence atherosclerosis susceptibility in humans is currently unstudied."

The senior author on the report was Robert V. Farese Jr., of the Cardiovascular Research Institute and the Department of Medicine at UCSF and the Gladstone Institute of Cardiovascular Disease at UCSF.


###
Contact: Robert Conn (rconn@wfubmc.edu), Karen Richardson (krchrdsn@wfubmc.edu) or Barbara Hahn (bhahn@wfubmc.edu) at (336) 716-4587


Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>