Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish may help solve ringing in vets' ears

05.05.2008
Ernest Moore, an audiologist and cell biologist at Northwestern University, developed tinnitus -- a chronic ringing and whooshing sound in his ears -- twenty years ago after serving in the U.S. Army reserves medical corps.

His hearing was damaged by the crack of too many M16 rifles and artillery explosions. He suspects his hearing also suffered from hunting opossum with rifles as a kid on his grandmother's farm in Tennessee.

Ever since his ears began ringing, Moore has been researching a cure. He's at the forefront of just a small band of such scientists in the country. There's a lot riding on his work.

Half of the soldiers returning from Iraq and Afghanistan exposed to explosive devices suffer from tinnitus. The major cause is exposure to loud noises, which can damage and destroy hair cells of the inner ear. It's the number one war-related disability.

... more about:
»Tinnitus »damage »ringing

Nearly 400,000 troops collected disability for service-related tinnitus in 2006, which cost $539 million in 2006. The number climbs nearly 20 percent each year. It could hit $1 billion by 2011, according to the American Tinnitus Association.

An additional 12 million Americans have tinnitus severe enough to seek medical attention. In about two million of those cases, patients are so debilitated they can't function normally.

Despite the widespread suffering, there has only been a paltry $3 million allotted for public and private research. As a tinnitus researcher, Moore feels like a cross between Rodney Dangerfield and Sisyphus.

It's been tough to snare research money from the small purse and hard to garner respect for tinnitus. "Ears don't bleed from tinnitus," Moore explained. "It's a hidden problem. It's not obvious and dramatic like a heart attack or cancer -- although it torments its sufferers." Only one out of ten grant proposals he submits each year have been funded.

The research itself is challenging because Moore can't ask mice and rats if their ears are ringing. Now, he's working with zebrafish (yes, they do have ears, which are remarkably similar to humans' ears.) He's been able to cause ringing in their ears -- he thinks -- by exposing them to certain drugs and tracking their erratic swimming on video. Moore then looks at the cells in their ears to see if the electrical firing has increased, an early sign of damage and tinnitus. His early findings show an increased firing.

Then Moore attempts to block this effect with drugs to return the cells to their normal activity. In preliminary research, it appears the drugs he has tested do slow down the increased electrical firing or tinnitus-like behavior of the hair cells in the ear.

Moore is beginning to meet with doctors to discuss launching a clinical trial to test these drugs for patients with tinnitus.

"If these drugs are found to be safe -- and some are already on the market for other uses -- and if they are found to have efficacy in humans, then they might be used to treat an individual's tinnitus," Moore said.

"If the hair cell is not totally damaged -- just beginning to break down, and you administer these drugs, you might be able to prevent it from further damage and interfere with the cells' ability to generate tinnitus," he explained.

Tinnitus finally will begin to get some respect in April when The Department of Defense 2008 Appropriations Bill will open up $50 million in new research funding for tinnitus related to service in the armed forces. Ernest Moore has applied to launch the clinical trial with the drugs he has used with the zebrafish.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu
http://www.northwestern.edu/newscenter/

Further reports about: Tinnitus damage ringing

More articles from Life Sciences:

nachricht Identifying the blind spots of soil biodiversity
04.08.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht AI & single-cell genomics
04.08.2020 | Helmholtz Zentrum München - German Research Center for Environmental Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>