Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive protein protects malaria parasite from heme

28.04.2008
Researchers at the Virginia Bioinformatics Institute (VBI) at Virginia Tech have identified Heme Detoxification Protein (HDP), a unique protein encoded in the malaria genome that represents a potential target for developing new malaria drugs.

The team, which includes researchers at Washington University School of Medicine, the United States National Institutes of Health, the United States Food and Drug Administration as well as other researchers at Virginia Tech, has characterized HDP and demonstrated that it plays a major role in protecting Plasmodium as the pathogen pursues infection of its host. The findings were published April 25th in the open-access journal PLoS Pathogens.*

Worldwide, the annual death toll of malaria exceeds 1 million, and children under the age of five are its major victims. The Plasmodium parasite that causes malaria in humans is transmitted through the bites of infected mosquitoes. Once inside the human body, the parasite initially develops in the liver and subsequently, upon release, infects red blood cells. After infecting host red blood cells, a rapid growth ensues, supported by the parasite’s consumption of hemoglobin, the oxygen-transporting protein that constitutes a massive 90% of the total protein present inside each red blood cell.

Destruction on this scale releases large quantities of heme, the prosthetic group responsible for oxygen transport in hemoglobin. Free heme is extremely damaging and to protect itself from this toxic onslaught, the parasite utilizes a novel mechanism where it rapidly converts heme into a crystalline material known as hemozoin.

... more about:
»HDP »Plasmodium »Protein »Target »VBI »heme »hemozoin

Dr. Dharmendar Rathore, Assistant Professor at VBI, remarked: “We discovered HDP as part of a functional genomics initiative that is focused on the identification of malaria proteins involved in disease pathology. A combination of cellular and biochemical approaches allowed us to rigorously characterize HDP. It appears that HDP has a number of striking features that make it a promising candidate as a drug target.

HDP is not only capable of rapidly converting heme into its non-toxic counterpart hemozoin, but it is highly conserved in all the species of the parasite and also appears to be critical for its survival.” He added: “The beauty of this discovery is that, while HDP has robust interactions with heme, it lacks homology to any of the known heme-binding proteins and has therefore eluded detection during previous attempts by several groups to identify parasite factors responsible for hemozoin formation.”

The conversion of heme into hemozoin is regarded as one of the weakest links in the lifecycle of the Plasmodium parasite. For example, chloroquine, the most widely used malaria drug, works by interacting with heme and preventing its detoxification into hemozoin. However drugs are not yet available that target any of the parasite-specific molecules involved in this process.

Dr. Rana Nagarkatti, research scientist at VBI, commented: “The identification of new drug targets is an essential step in the development of next-generation drugs for treating malaria. Drugs that specifically interact with HDP and inhibit its detoxification activities could potentially have drastic effects on the viability of the malaria parasite.” Dr. Dewal Jani, a member of the VBI research team, remarked: “The identification of HDP fills an important gap in our understanding of the mechanism of hemozoin production in the malaria parasite. We have also established the route by which the HDP is transported out of Plasmodium and into the red blood cell before it subsequently returns to the parasite food vacuole where hemozoin is synthesized. This gives us an interesting insight into the inner workings of the parasite.”

Dr. Rathore concluded: “New drugs are urgently needed to address the huge public health burden posed by malaria across the globe. We have recently undertaken a high-throughput screening of chemical libraries to identify compounds that can inhibit the activity of HDP. Several lead compounds were identified and have been characterized in our laboratory at VBI and subsequently validated at the Swiss Tropical Institute in Basel, Switzerland. We see considerable potential in developing these lead compounds into new drugs that can act by blocking the function of HDP in the parasite.”

Otto Folkerts, Associate Director of Technology Development at VBI, added: “Virginia Tech Intellectual Properties Inc. has filed patents that cover the intellectual property behind this discovery. We are actively seeking partners who are interested in licensing this intellectual property or jointly pursuing the development of potential malaria drug candidates that may arise from this work.”

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

Further reports about: HDP Plasmodium Protein Target VBI heme hemozoin

More articles from Life Sciences:

nachricht Dissolving protein traffic jam at the entrance of mitochondria
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Producing tissue and organs through lithography
23.05.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>