Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats depleted of salt become sensitized to amphetamine, show unusual growth of brain cells

04.06.2002


Laboratory rats that have been repeatedly depleted of salt become sensitized to amphetamine, exhibiting an exaggerated hyperactive response to the drug and an unusual pattern of neuronal growth in a part of their brains, neuroscientists have found.



The researchers, headed by University of Washington psychologist Ilene Bernstein, discovered that nerve cells in the nucleus accumbens of sensitized rats have more branches and were 30 percent to 35 percent longer than normal. The nucleus accumbens, located in the forebrain, is involved in the reward and motivation system in rats and in humans. It is associated with regulating motivated behaviors of such natural drives as those for food and salt, and for artificial rewards provided by drugs.

The findings are published in the current issue of the Journal of Neuroscience.


"This number, 30 to 35 percent, is startling and implies an ability for neurons to make more connections," said Bernstein.

The research was triggered by several recent papers. One reported that rats sensitized to amphetamine showed this type of neuron growth. A second found that rats deprived of food seemed to be amphetamine sensitized. When an animal or person becomes sensitized their behavior changes. With amphetamine, animals and people become hyperactive. Rats that are salt sensitized drink and eat salt more rapidly and in greater quantities. Why they behave this way is unknown, Bernstein said.

"That research and ours seem to indicate that being hungry or sodium deprived enough can change an animal’s or a person’s response to a drug even if they have not been exposed to the drug previously," she said.

"We don’t know if this holds up in humans. But the same part of the brain and the response to drugs holds up across species. The same systems are involved in rats and humans when it comes to amphetamines and cocaine. This suggests evidence of a common natural substrate to natural and artificial rewards that is worth further investigation."

She added that the findings also point to questions that need to be explored. These include determining how long cross sensitization persists and whether physical challenges such as salt depletion alter people’s responses to drugs.

"There is differential response among people who are challenged or stressed based on their history. Some people may have a life-long susceptibility to these kinds of things. We also need to know why these drugs are so powerful and what systems they are taking advantage of that didn’t evolve naturally."

In the study, the researchers first gave a group of rats diuretics to deplete them of salt. Then they gave the animals a 3 percent saltwater solution, a mixture they ordinarily would not like or drink. This procedure was repeated two more times, with each treatment given a week apart.

Then the animals’ brains were examined under a microscope, revealing the 30 percent to 35 percent increase in neuron growth in the nucleus accumbens compared to the brains of normal rats. The ends of brain cells, or dendrites, are where neurons make connections with other neurons, implying an ability to make more connections, said Bernstein.

To check for cross sensitization to amphetamine, another group of rats was salt depleted twice. Then they were allowed to explore an open, dark plastic enclosure with the floor divided into a grid by white tape. A week after the second salt depletion, the rats and a control group of animals were injected with amphetamine and placed in the enclosure.

The psychostimulant effects of the drugs were measured by two behaviors – the number of taped lines each animal crossed over and how many times it reared up on its hind feet. The two groups didn’t differ in the number of lines each crossed, but the salt-depleted rats showed significantly more rearing behavior.

What was particularly striking about the findings is that they occurred relatively quickly, just two weeks after the first salt-depletion treatment, said Bernstein.


Other members of the research team included Mitchell Roitman, a UW graduate who is now a post-doctoral researcher at the University of North Carolina, and Theresa Jones, an assistant psychology professor at the University of Texas. The UW’s Royalty Research Fund supported the research.

For more information, contact Bernstein at (206) 543-4527 or ileneb@u.washington.edu


Joel Schwarz | EurekAlert

More articles from Life Sciences:

nachricht Researchers discover vaccine to strengthen the immune system of plants
24.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Brain-cell helpers powered by norepinephrine during fear-memory formation
24.01.2020 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>