Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique fungal collection could hold key to future antibiotics

23.01.2008
Scientists at Royal Holloway, University of London have joined forces with CABI to establish a facility to screen for potential new antibiotics. Royal Holloway and CABI both bring a combination of individual scientific skills, expertise and resources to the project. When brought together, these offer the opportunity to build a highly focused natural products drug discovery operation that will address the urgent need for bringing new antibiotic compounds to market.

Since their discovery, antibiotics and other antimicrobial agents have saved millions of lives and significantly eased patients’ suffering. However, over time, micro-organisms have developed resistance to existing antibiotics making infections difficult, if not impossible, to treat. The recent appearance of multiple-resistant bacterial infections has radically increased the necessity for new antibiotic discovery.

As part of a three-year programme, the joint research facility will utilise CABI’s unique collection of fungi gathered from all parts of the world, to screen for potential new antibiotics. Although the first natural product antibiotic to be used clinically, penicillin, was isolated from a fungus, these organisms have not been as extensively evaluated as bacteria as sources of new drugs for treating infections and so there is great potential for discovery in CABI’s 28,000 organism collection.

Furthermore, over the past 25 years companies have concentrated on using chemistry-based approaches to modify recognised antibiotic structures. However, the use of natural products, from fungi, which have evolved from millions of years of competition against bacteria is likely to lead to products with new modes of antibiotic action that disease-causing bacteria cannot counter. This new joint facility aims to harness these natural chemical compounds from fungi to offer potential new antibiotics. Similarly, compounds that have proven health benefits when taken in the diet (so-called nutraceuticals) are also likely to be found in fungi and the new joint research facility will also screen the collection for new nutraceuticals.

Professor Peter Bramley and Dr Paul Fraser in the School of Biological Sciences at Royal Holloway and Dr Trevor Nicholls, CEO and Dr Joan Kelley Executive Director of CABI are managing the project. Professor Bramley and Dr Fraser’s extensive experience in molecular biology and analytical methodologies will be applied to state-of-the-art screening techniques for the discovery of new compounds and the manipulation, recombination and expression of their biosynthetic pathways to bioengineer new, related compounds. Dr Nicholls’ experience in the biotechnology industry and Dr Kelley’s expertise and knowledge of mycology and biodiversity will direct the research to identify strains which are likely to be more biochemically diverse and commercially valuable for screening.

Professor Bramley commented, “This joint initiative lays the foundations for a long term collaboration with potential strategic benefits, both research and commercial. A major focus will be the search for new antibiotics and nutraceuticals, for which there is now increasing commercial, nutritional and medical demand.”

Dr Trevor Nicholls, CEO CABI added, “This is a really exciting partnership and we are looking forward to working with the expertise of the scientists at Royal Holloway. We are hopeful that our collaboration will prove the winning formula for discovering new drugs to fight cancers, diseases and resistant strains of infections such as MRSA.”

The joint facility is located in the Royal Holloway’s School of Biosciences and houses a new state-of-the-art mass spectrometer. As part of this collaboration, two technicians will be employed and a PhD studentship funded.

Royal Holloway has also obtained early stage seed fund investment from the London Development Agency backed WestFocus PARK Fund, to commercialise any potential new discoveries emerging from this project. The project team will work closely with the Research & Enterprise department at Royal Holloway to protect, manage and exploit any new intellectual property.

Lynsey Sterrey | alfa
Further information:
http://www.cabi.org
http://www.cabi.org//datapage.asp?iDocID=1010

Further reports about: Holloway antibiotic collection compounds fungi infections

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>