Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snake venoms share similar ingredients

20.12.2007
Venoms from different snake families may have many deadly ingredients in common, more than was previously thought. A study published in the online open access journal BMC Molecular Biology has unexpectedly discovered three-finger toxins in a subspecies of the Massasauga Rattlesnake, as well as evidence for a novel toxin genes resulting from gene fusion.

Susanta Pahari from National University of Singapore, Singapore (currently working at Sri Bhagawan Mahaveer Jain College, Bangalore, India) used venom glands from a rare rattlesnake that lives in arid and desert grasslands. Known as Desert Massasauga (Sistrurus catenatus edwardsii), this pitviper is a subspecies of the North American Massasauga Rattlesnake (Sistrurus catenatus).

Together with Stephen Mackessy from the University of Northern Colorado, USA and R. Manjunatha Kini from National University of Singapore, Singapore, Pahari constructed a cDNA library of the snake's venom gland and created 576 tagged sequences. A cocktail of recognized venom toxin sequences was detected in the library, but the venom also contained three-finger toxin-like transcripts, a family of poisons thought only to occur in another family of snakes (Elapidae). The team also spotted a novel toxin-like transcript generated by the fusion of two individual toxin genes, a mechanism not previously observed in toxin evolution. Toxin diversity is usually the result of gene duplication and subsequently neofunctionalization is achieved through several point mutations (called accelerated evolution) on the surface of the protein. Pahari says "In addition to gene duplication, exon shuffling or transcriptional splicing may also contribute to generating the diversity of toxins and toxin isoforms observed among snake venoms."

Previously, researchers identified venom compounds using protein chemistry or individual gene cloning methods. However, less abundant toxins were often missed. The library method has now revealed new toxin genes and even new families of toxins. Taking low abundance toxins into consideration shows advanced snakes' venoms actually have a greater similarity than previously recognized.

... more about:
»Toxin »venom

Snake venoms are complex mixtures of pharmacologically active proteins and peptides. Treating snake venom victims can be complicated because of the variation between venoms even within snake families. Kini says "Such a diversity of toxins provides a gold mine of bioactive polypeptides, which could aid the development of novel therapeutic agents."

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcmolbiol/

Further reports about: Toxin venom

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>