Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Recording embryonic development


Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ layers. Out of these, the different tissues, organs and body parts of the new organism are formed.

Red fluorescent reporter mouse embryo at day 8.5 with a representative lineage tree.

Picture by courtesy of Zachary Smith / Harvard University, Boston, USA

But what ensures that this process really results in cells with different functions, which, in addition, end up at the right place in the growing organism? This is what Alexander Meissner from the Max Planck Institute for Molecular Genetics in Berlin is interested in.

Together with scientists from San Francisco, his team has developed a molecular recorder that can trace the lineage of individual cells back to their progenitors. The recorder was introduced into the fertilized egg and has been passed on to all subsequent cells.

Cells that contain the recorder accumulate continuously random mutations and pass these on to their daughter cells, which, in addition, acquire new ones.

The mutations do not affect the function of the cells, but leave a characteristic pattern in their genome. This can then be used to trace back the lineage of the cells. By combined analysis of lineage and function of the individual cells, a cell fate map can be created, which gives insights into fundamental developmental processes.

Embryonic development starts with the fusion of oocyte and sperm cell. They form a single fertilized cell that eventually gives rise to a complex, multicellular organism. While the fertilized oocyte is totipotent, which means it can develop all tissues and organs of the embryo as well as the placenta, the daughter cells lose this ability more and more and differentiate into certain directions.

During the first third of embryonic development, the so-called embryogenesis, the germ layers are formed. These are three primary layers of cells, which later give rise to all organs and tissues of the organism. The mechanisms that control embryogenesis and coordinate cell differentiation are very complex, especially in mammals, because it starts with the formation of many identical cells, before they begin to develop different functions.

In order to better understand the biological processes that control embryonic development, Alexander Meissner and his team at Harvard University in Boston and the at the Max Planck Institute for Molecular Genetics in Berlin together with colleagues from the University of California, San Francisco, designed a molecular recording system, capable to record the development of cells during embryogenesis on the molecular level, so that it can be read out later.

Integration of gene scissors CRISPR/Cas 9 into the cells

The scientists used the CRISPR/Cas9 system for their molecular recorder. In this system, often referred to as gene scissors, the enzyme Cas9, which is able to cut DNA, binds to a short ribonucleic acid (RNA). The RNA in turn binds to a piece of target DNA in the genome, thus bringing Cas9 into close proximity of the bound DNA.

Cas9 cuts the DNA at the target DNA and creates a double strand break that gets repaired by cellular mechanisms afterwards. However, this repair process is error-prone, often resulting in loss of DNA fragments or insertion of additional fragments. This often leads to genomic mutations at this position, which are passed on to the subsequent daughter cells.

Meissner and colleagues artificially fertilized mouse oocytes and, at the same time, transferred the components of the CRISPR / Cas9 system to the cells. An additional DNA sequence has been inserted and served as target region for the mutations, so that they do not interrupt the natural functions of the cell. Each cell produces the components of the CRISPR/Cas9 system itself and continuously generates DNA mutations, which are inherited with each cell division. Independently from each other, additional mutations are produced randomly in each daughter cell and differentiate them from one another.

Thus, each cell gets its unique, individual mutation pattern, similar to a molecular barcode, which makes it unmistakable. Because daughter cells always inherit the mutations of the parent generation and recruit additional mutations to them individually, the system can record the accumulation of different mutations per cell division like a molecular recorder.

By incorporating a variety of target DNAs and three different guide RNAs that bring the Cas9 to the target, the scientists managed to expand the molecular recorder, so that it could store a wide variety of different mutations over a long period of time. "This is especially relevant to be able to follow the complex mammalian development over a longer period of time," explains Meissner.

Molecular recorder can trace back lineage of cells

Meissner and his team together with their colleagues in San Francisco analyzed the cells of mouse embryos at the age of 8.5-9.5 days, to which the molecular recorder had been transferred at fertilization. Using the accumulated mutations, the scientists were able to trace the development of cells from the first totipotent progenitor cells to the three germ layers that had already formed then. At the same time they created a so-called RNA transcription profile of the individual cells.

This shows which part of the DNA of each cell is translated into RNA or proteins, thereby giving the researchers clues as to what function the cell might have. "Typically, similar functions of cells indicate a common ancestry," says Meissner. However, the molecular recorder also identified cells with a similar transcription profile that derived from different cells.

Using the molecular recording system, early embryonic development can be accurately traced to their origins. This opens up new ways to specifically address previously opaque questions in embryonic development. "In addition, the tool can also be targeted to different types of cells at a later stage of development," says Meissner.

"This way, we hope to gain new insights on various cellular mechanisms, for example, how cells communicate, sense signals and coordinate regeneration in certain contexts."

Wissenschaftliche Ansprechpartner:

Professor Dr. Alexander Meissner
Max Planck Institute for Molecular Genetics, Berlin, Germany
Director, Head of Dept. of Genome Regulation
Phone: ++49 30 8413-1880


Michelle M. Chan, Zachary D. Smith, Stefanie Grosswendt, Helene Kretzmer, Thomas M. Norman, Britt Adamson, Marco Jost, Jeffrey J. Quinn, Dian Yang, Matthew G. Jones, Alex Khodaverdian, Nir Yosef, Alexander Meissner & Jonathan S. Weissman
Molecular recording of mammalian Embryogenesis
Nature 13.05.2019 [Advanced Online Publication]
DOI: 10.1038/s41586-019-1184-5

Dr. Patricia Marquardt | Max-Planck-Institut für molekulare Genetik
Further information:

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>