Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Test Uses Origami Technology

22.06.2012
New concept for paper biosensors

Complex laboratory investigations do produce reliable results, but they are not useful for point-of-care diagnostics. This is especially true in developing countries, which must rely on simple, inexpensive test methods that do not require a power source.


Biosensors based on paper are an interesting alternative. American researchers from the University of Texas at Austin and the University of Illinois at Urbana-Champaign have now introduced a particularly clever concept in the journal Angewandte Chemie: print on one side of the paper, fold it up origami-style, laminate it, and the test is ready. Test evaluation requires only a voltmeter.

The team of researchers uses chromatography paper fabricated by wax printing. The printed areas become hydrophobic, while the unprinted paper remains hydrophilic. On one half of the paper, the researchers led by Richard M. Crooks and Hong Liu created a sample inlet and two hydrophilic channels, each leading from the inlet to a small chamber.

The two chambers are connected to each other through a narrow opening. The required reagents are also “printed” onto the paper. On the second half of the paper, a screen-printing process is used to add two electrodes made of conductive carbon ink. When the paper is then folded down the middle according to the principles of origami—no tape or glue—a three-dimensional structure is formed. This causes the electrodes to come into contact with the chambers. Finally, the folded paper is laminated.

When a drop of the sample is put into the inlet, the liquid moves through the two channels. One of the channels contains microspheres coated with an aptamer. An aptamer is a strand of DNA that can be constructed so as to selectively bind nearly any desired analyte molecule. For the purpose of demonstration, the researchers chose an aptamer for adenosine. If adenosine is in the sample, the aptamer binds to it. This releases an enzyme that was coupled to the aptamer. The enzyme continues to flow through the channel and reaches the chamber, which contains glucose and Prussian blue (iron hexacyanoferrate).

This complex contains trivalent iron. The enzyme, glucose oxidase, oxidizes the glucose, which causes the iron in the Prussian blue to be reduced to the divalent form.

The second channel contains spheres with no aptamer. In the second chamber, therefore, no iron is reduced. Because the oxidation state of the iron in one chamber has been changed, the two chambers no longer have the same composition and an electric potential builds up. This can be measured by means of a capacitor and a measuring device like those used to test the voltage of a battery.

This principle can be used to easily and inexpensively produce rapid tests for a broad spectrum of different target molecules.

About the Author
Dr. Richard Crooks is the Robert A. Welch Chair of Materials Chemistry at the University of Texas at Austin. He is interested in designing inexpensive diagnostic devices and in the field of electrochemical catalysis.
Author: Richard M. Crooks, The University of Texas at Austin (USA), http://rcrooks.cm.utexas.edu/research/styled-4/index.html
Title: Aptamer-Based Origami Paper Analytical Device for Electrochemical Detection of Adenosine

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201202929

Dr. Richard Crooks | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.
http://rcrooks.cm.utexas.edu/research/styled-4/index.html

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>