Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum chemistry solves the mystery of why there are these 20 amino acids in the genetic code


Publication in PNAS provides an answer to an old and fundamental question of biochemistry

Using quantum chemical methods, a team of researchers led by Dr. Matthias Granold and Professor Bernd Moosmann of the Institute of Pathobiochemistry at Johannes Gutenberg University Mainz solved one of the oldest puzzles of biochemistry.

The first 13 amino acids are characterized by very similar chemical hardness and electronic energy levels (shown in the image as a single circle). The new amino acids became increasingly softer and more individualized during evolution, which is reflected in differentiated energy levels (in the image represented as multiple concentric circles).

(source: Michael Plenikowski)

They uncovered why there are 20 amino acids that form the basis of all life today, even though the first 13 amino acids generated over time would have been sufficient to form a comprehensive repertoire of the required functional proteins.

The decisive factor is the greater chemical reactivity of the newer amino acids rather than their spatial structure. In their publication in the leading journal PNAS, the Mainz-based researchers also postulate that it was the increase in oxygen in the biosphere that triggered the addition of supplementary amino acids to the protein tool box.

All life on Earth is based on 20 amino acids, which are governed by the DNA to form proteins. In the inherited DNA, it is always three sequential DNA bases, or codons, which combine to "encode" one single of these 20 amino acids. The resultant grid of codons is what is known as the genetic code.

"Researchers have been puzzled for decades why evolution has selected these 20 amino acids for genetic encoding," said Professor Bernd Moosmann. "The presence of the last and newest seven amino acids is particularly hard to explain, because suitable and functional proteins can be assembled using just the first and oldest 10 to 13 amino acids."

In a new approach, the researchers compared the quantum chemistry of all amino acids used by life on Earth with the quantum chemistry of amino acids from space, brought in on meteorites, as well as with that of modern reference biomolecules. They found that the newer amino acids had become systematically softer, i.e., more readily reactive or prone to undergo chemical changes.

"The transition from the dead chemistry out there in space to our own biochemistry here today was marked by an increase in softness and thus an enhanced reactivity of the building blocks," explained Moosmann. The researchers were able to verify the results of their theoretical calculations in biochemical experiments. Functional aspects also must have played a significant role with regard to the more recent amino acids as these newcomers hardly exhibit particular advantages when it comes to building protein structures.

However, the problem remained of why the soft amino acids were added to the tool box in the first place. What exactly were these readily reactive amino acids supposed to react with? On the basis of their results, the researchers conclude that at least some of the new amino acids, especially methionine, tryptophan, and selenocysteine, were added as a consequence of the increase in the levels of oxygen in the biosphere.

This oxygen promoted the formation of toxic free radicals, which exposes modern organisms and cells to massive oxidative stress. The new amino acids underwent chemical reactions with the free radicals and thus scavenged them in an efficient manner. The oxidized new amino acids, in turn, were easily repairable after oxidation, but they protected other and more valuable biological structures, which are not repairable, from oxygen-induced damage.

Hence, the new amino acids provided the remote ancestors of all living cells with a very real survival advantage that allowed them to be successful in the more oxidizing, "brave" new world on Earth. "With this in view, we could characterize oxygen as the author adding the very final touch to the genetic code," stated Moosmann.

Matthias Granold, Parvana Hajieva, Monica Ioana Tosa, Florin-Dan Irimie, Bernd Moosmann, Modern diversification of the amino acid repertoire driven by oxygen, Proceedings of the National Academy of Sciences of the United States of America (PNAS) 115:1, 41-46,
2 January 2018,
DOI: 10.1073/pnas.1717100115

The first 13 amino acids are characterized by very similar chemical hardness and electronic energy levels (shown in the image as a single circle). The new amino acids became increasingly softer and more individualized during evolution, which is reflected in differentiated energy levels (in the image represented as multiple concentric circles).
(source: Michael Plenikowski)

Professor Dr. Bernd Moosmann, Institute of Pathobiochemistry, Mainz University Medical Center, Langenbeckstr. 1, 55131 Mainz, GERMANY
phone +49 6131 39-26707 or 39-20186, fax +49 6131 39-20185, e-mail:

Press Contact:
Dr. Renée Dillinger-Reiter, Corporate Communications, Mainz University Medical Center,
Langenbeckstr. 1, 55131 Mainz, GERMANY
phone +49 6131 17-7428, fax +49 6131 17-3496, e-mail:

About the University Medical Center of Johannes Gutenberg University Mainz
The University Medical Center of Johannes Gutenberg University Mainz is the only medical facility providing supramaximal care in Rhineland-Palatinate while also functioning as an internationally recognized hub of medical science. It has more than 60 clinics, institutes, and departments that collaborate across the various disciplines. Highly specialized patient care, research, and teaching form an integral whole at the Mainz University Medical Center. Approximately 3,300 students are trained in medicine and dentistry in Mainz. With its approximately 7,500 personnel, the Mainz University Medical Center is also one of the largest employers in the region and an important driver of growth and innovation. Further information is available online at

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>