Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue scientists reveal how bacteria build homes inside healthy cells

21.12.2011
Bacteria are able to build camouflaged homes for themselves inside healthy cells - and cause disease - by manipulating a natural cellular process.

Purdue University biologists led a team that revealed how a pair of proteins from the bacteria Legionella pneumophila, which causes Legionnaires disease, alters a host protein in order to divert raw materials within the cell for use in building and disguising a large structure that houses the bacteria as it replicates.

Zhao-Qing Luo, the associate professor of biological sciences who headed the study, said the modification of the host protein creates a dam, blocking proteins that would be used as bricks in cellular construction from reaching their destination. The protein "bricks" are then diverted and incorporated into a bacterial structure called a vacuole that houses bacteria as it replicates within the cell. Because the vacuole contains materials natural to the cell, it goes unrecognized as a foreign structure.

"The bacterial proteins use the cellular membrane proteins to build their house, which is sort of like a balloon," Luo said. "It needs to stretch and grow bigger as more bacterial replication occurs. The membrane material helps the vacuole be more rubbery and stretchy, and it also camouflages the structure. The bacteria is stealing material from the cell to build their own house and then disguising it so it blends in with the neighborhood."

The method by which the bacteria achieve this theft is what was most surprising to Luo.

The bacterial proteins, named AnkX and Lem3, modify the host protein through a biochemical process called phosphorylcholination that is used by healthy cells to regulate immune response. Phosphorylcholination is known to happen in many organisms and involves adding a small chemical group, called the phosphorylcholine moiety, to a target molecule, he said.

The team discovered that AnkX adds the phosphorylcholine moiety to a host protein involved in moving proteins from the cell's endoplasmic reticulum to their cellular destinations. The modification effectively shuts down this process and creates a dam that blocks the proteins from reaching their destination.

The bacterial protein Lem3 is positioned outside the vacuole and reverses the modification of the host protein to ensure that the protein "bricks" are free to be used in creation of the bacterial structure.

This study was the first to identify proteins that directly add and remove the phosphorylcholine moiety, Luo said.

"We were surprised to find that the bacterial proteins use the phosphorylcholination process and to discover that this process is reversible," he said. "This is evidence of a new way signals are relayed within cells, and we are eager to investigate it."

The team also found that the phosphorylcholination reaction is carried out at a specific site on the protein called the Fic domain. Previous studies had shown this site induced a different reaction called AMPylation.

It is rare for a domain to catalyze more than one reaction, and it was thought this site's only responsibility was to transfer the chemical group necessary for AMPylation, Luo said.

"Revealing that this domain has dual roles is very important to identify or screen for compounds to inhibit its activity and fight disease," he said. "This domain has a much broader involvement in biochemical reactions than we thought and may be a promising target for effective treatments."

During infection bacteria deliver hundreds of proteins into healthy cells that alter cellular processes to turn the hostile environment into one hospitable to bacterial replication, but the specific roles of only about 20 proteins are known, Luo said.

"In order to pinpoint proteins that would be good targets for new antibiotics, we need to determine their roles and importance to the success of infection," he said. "We need to understand at the biochemical level exactly what these proteins do and how they take over natural cellular processes. Then we can work on finding ways to block these activities, stop the infection and save lives."

A paper detailing their National Institutes of Health-funded work is published in the current issue of the Proceedings of National Academy of Sciences. In addition to Luo, Purdue graduate student Yunhao Tan and Randy Ronald of Indiana University co-authored the paper.

Luo next plans to use the bacterial proteins as a tool to learn more about the complex cellular processes controlled by phosphorylcholination and to determine the biochemical processes role in cell signaling.

Writer: Elizabeth K. Gardner, 765-494-2081, ekgardner@purdue.edu

Source: Zhao-Wing Luo, 765-496-6697, luoz@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>