Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Pseudoscorpion Discovered in Yosemite National Park

02.12.2010
It waits blindly in the darkness of granite caves in Yosemite National Park, moving little to conserve energy.

Its venom-filled claw at the ready, it waits for prey to amble by it. Giving a quick tap to a possible meal, this newly discovered, blind pseudoscorpion will grab the prey and wait for the poison to take hold. Then, it will eat.

Thankfully, at less than half an inch in length with legs outstretched, Parobisium yosemite poses little threat to humans or any other animals larger than an eighth of an inch, said James C. Cokendolpher, a research scientist and assistant curator of invertebrates at The Museum of Texas Tech University.

He and Austin-based researcher, Jean K. Krejca, recently documented the new arachnid in the Sept. 30th Occasional Papers by Texas Tech University’s Natural Science Research Laboratories. The new animal is commonly called the Yosemite cave pseudoscorpion.

“This pseudoscorpion was originally found three or four years ago,” Cokendolpher said. “There was a team from Austin that was hired to go into some of the caves in Yosemite National Park to do a survey and map some of the caves. Jean was one of the first ones to discover the species. She and others caught two of them, which were sent to me for identification. Once we discovered it was a species unknown to science, they went back and collected in some other areas to see if the species was there.”

Most cave-dwelling species live in limestone caves, he said, where more humidity and access to food makes it more hospitable for life. Finding Parobisium yosemite in the caves formed from granite rockfalls came as a surprise.

It might be the second discovered cave-dwelling pseudoscorpion that lives in these granite talus caves in the world, he said.

Strange to behold, pseudoscorpions are small arachnid predators, Cokendolpher said. With claws in the front, the animals have eight legs, but no long post-abdomen with a stinger like a real scorpion. Pseudoscorpions are an order of arachnids unto themselves, such as ticks, mites, daddy longlegs and vinegaroons.

“This pseudoscorpion is as large as many of the other cave-dwelling species,” Cokendolpher said, explaining most of the more than 3,000 species of pseudoscorpions are much smaller. “Cave species are generally larger, have longer appendages, lighter coloration and are missing all the eyes. The canyon where it was found was made by a glacier during an ice age millions of years ago. Through time, rubble with larger rocks would fall and create piles with caves or subterranean voids. We think that’s where this animal was trapped and evolved into the species that it is now.”

Cokendolpher explained the animal doesn’t move around much, probably to conserve energy.

“I kept a couple of them in the laboratory for quite a while,” he said. “They basically sat and did nothing for much of the time. We kept them in Petri dishes with plaster of Paris that was moistened so it was more like cave conditions. When we introduced other animals into the Petri dish it would go over and tap the animal. When it did that, it was able to sense chemical cues there such as identification, how large the item was and whether it was something suitable to eat. Out of several weeks we kept them, the only thing that was eaten was a tiny spider. Like many of other cave animals, it doesn’t need a lot of nourishment. That’s good for them in a food-poor environment.”

Watch the interview with Cokendolpher at
http://www.youtube.com/watch?v=pbOxJ08xtHw
Find Texas Tech news, experts and story ideas at www.media.ttu.edu.
CONTACT: James Cokendolpher, assistant curator, invertebrate zoology, Museum of Texas Tech University, (806) 742-2486 ext. 271, or james.cokendolpher@ttu.edu

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>