Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pruning of Blood Vessels: Cells Can Fuse With Themselves

20.04.2015

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the vascular system has focused primarily on the formation of such vascular networks.


Blood vessel network of the zebrafish during the remodeling phase. Some of the small thin branches will regress to form a simpler vessel pattern.

Biozentrum, University of Basel

Markus Affolter’s research group at the Biozentrum of the University of Basel has now investigated the blood vessel pruning in the zebrafish and discovered that the cells have the ability to self-fuse at the membrane margins. Previously, it was unknown that blood vessel cells of vertebrates have this property.

Self-fusion observed in vertebrates for the first time

The formation of blood vessels follows a complicated architectural plan. “At a first glance, the plan for vascular regression seems to be the same but it must differ at the molecular level”, explains Markus Affolter. During vascular regression, most of the cells consecutively migrate and incorporate into the neighboring functional vessels.

The last single cell that remains in the pruning vessel reaches around the lumen and the membrane margins of this cell undergo fusion thus closing the vessel and assuring its tightness. This process, named cell self-fusion, ensures a controlled closure of a regressive blood vessel thus preventing blood leakage. For the first time this self-fusion of cells has been observed in vertebrates, the group humans also belong to. “Such cell behavior was so far only known in simpler organisms such as nematodes”, explains Markus Affolter.

Greater plasticity through self-fusion

During the development of the vascular network, blood vessels are constantly formed but many of them are only required temporarily. Just like a disused arm of a highly branched river, the flow of fresh blood through these vessels is interrupted and the organism begins to prune this side arm. In this way the vascular system regulates itself, optimizing its blood circulation by pruning and recycling the unnecessary vessels with reduced blood flow and blood pressure.

“This newly uncovered process is important for the understanding of blood vessel formation and regression on the cellular level, as this can also explain the extraordinary plasticity and changeability of the vascular system”, says Anna Lenard, the first author of this publication. These investigations were performed on the zebrafish, as in this almost transparent fish the development of blood vessels can be observed in the living animal using modern microscopy techniques.

Relevance of self-fusion for cancer?

“How the cell recognizes its own membrane margins and how fusion with neighboring blood vessel cells is prevented, is not yet known”, says Markus Affolter. Since a long time it has been postulated that each individual cell of an organism has its own code.

“The regression process could partly confirm this theory”, thinks Markus Affolter. Together with his team, he would like to investigate the self-fusion process more closely. As tumors require a well developed vascular system for their growth, a better understanding of the formation and regression of this network could open possibilities for the manipulation of such a system.

Original article:
Anna Lenard, Stephan Daetwyler, Charles Betz, Elin Ellertsdottir, Heinz-Georg Belting, Jan Huisken, Markus Affolter:
Endothelial Cell Self-fusion during Vascular Pruning.
PLoS Biology published online 17 April 2015 | DOI: 10.1371/journal.pbio.1002126

Further information:
Heike Sacher, Biozentrum Communications,Tel. +41 61 267 14 49, E-Mail: heike.sacher@unibas.ch University of Basel

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Pruning-of-blood-vessels....

Heike Sacher | Universität Basel

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>