Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins Hey1 and Hey2 Ensure that Inner Ear 'Hair Cells' Are Made at the Right Time and in the Right Place

17.09.2014

Two Johns Hopkins neuroscientists have discovered the “molecular brakes” that time the generation of important cells in the inner ear cochleas of mice. These “hair cells” translate sound waves into electrical signals that are carried to the brain and are interpreted as sounds. If the arrangement of the cells is disordered, hearing is impaired. A summary of the research will be published in The Journal of Neuroscience on Sept. 16.

“The proteins Hey1 and Hey2 act as brakes to prevent hair cell generation until the time is right,” says Angelika Doetzlhofer, Ph.D., an assistant professor of neuroscience. “Without them, the hair cells end up disorganized and dysfunctional.”


Angelika Doetzlhofer

The hair cells of mice missing just Hey2 are neatly lined up in four rows (left) while those missing Hey1 and Hey2 are disorganized (right). The cells' hairlike protrusions (pink) can be misoriented, too.

The cochlea is a coiled, fluid-filled structure bordered by a flexible membrane that vibrates when sound waves hit it. This vibration is passed through the fluid in the cochlea and sensed by specialized hair cells that line the tissue in four precise rows. Their name comes from the cells’ hairlike protrusions that detect movement of the cochlear fluid and create electrical signals that relay the sound to the brain.

During development, “parent cells” within the cochlea gradually differentiate into hair cells in a precise sequence, starting with the cells at the base of the cochlea and progressing toward its tip. The signaling protein Sonic Hedgehog was known to be released by nearby nerve cells in a time- and space-dependent pattern that matches that of hair cell differentiation. But the mechanism of Sonic Hedgehog’s action was unclear.

Doetzlhofer and postdoctoral fellow Ana Benito Gonzalez bred mice whose inner ear cells were missing Hey1 and Hey2, two genes known to be active in the parent cells but turned off in hair cells. They found that, without those genes, the cells were generated too early and were abnormally patterned: Rows of hair cells were either too many or too few, and their hairlike protrusions were often deformed and pointing in the wrong direction.

“While these mice didn’t live long enough for us to test their hearing, we know from other studies that mice with disorganized hair cell patterns have serious hearing problems,” says Doetzlhofer.

Further experiments demonstrated the role of Sonic Hedgehog in regulating the two key genes.

“Hey1 and Hey2 stop the parent cells from turning into hair cells until the time is right,” explains Doetzlhofer. “Sonic Hedgehog applies those ‘brakes,’ then slowly releases pressure on them as the cochlea develops. If the brakes stop working, the hair cells are generated too early and end up misaligned.”

She adds that Sonic Hedgehog, Hey1 and Hey2 are found in many other parent cell types throughout the developing nervous system and may play similar roles in timing the generation of other cell types.

This work was supported by grants from the Whitehall Foundation (2010-05-81) and the National Institute on Deafness and other Communication Disorders (F32DC013477, DC005211).

On the Web:

View the article at The Journal of Neuroscience (after the embargo lifts). http://dx.doi.org/10.1523/JNEUROSCI.1494-14.2014

Learn more about Angelika Doetzlhofer.
www.hopkinsmedicine.org/profiles/results/directory/profile/6477655/angelika-doetzlhofer

Catherine Kolf | newswise

Further reports about: Cells Communication Disorders Medicine brakes cell types genes hair cells hearing sound waves

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>