Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein involved in nematode stress response identified

14.12.2018

When humans experience stress, their inner turmoil may not be apparent to an outside observer. But many animals deal with stressful circumstances - overcrowded conditions, not enough food - by completely remodeling their bodies. These stress-induced forms, whether they offer a protective covering or more camouflaged coloration, can better withstand the challenge and help the animal survive until conditions improve.

Until now, it wasn't clear what molecular trigger was pulled to allow this structural remodeling in times of stress. But researchers at the University of Illinois and the University of Pennsylvania have discovered the protein responsible in the roundworm C. elegans.


The free-living nematode, C. elegans, exists in a stress-resistant form called dauer in low-resource or overcrowded conditions. University of Illinois and University of Pennsylvania researchers found the protein responsible for this structural remodeling, DEX-1. The extracellular matrix protein may shed light on metastasis in human cancers and other processes involving stem cells.

Credit: Nathan Schroeder, University of Illinois

"We're using a really simple animal system to understand basic biological questions that have implications not only for nematodes, including important crop parasites, but also for higher animals, including humans," says Nathan Schroeder, assistant professor in the Department of Crop Sciences at U of I, and author of the new study published in Genetics.

When C. elegans larvae are stressed, they stop eating, their development halts, and they enter a stress-resistant stage known as dauer. In this form, their bodies become distinctly thinner and longer and develop an outer cuticle with ridges from tip to tail.

Schroeder and his team were investigating a protein called DEX-1 for an unrelated project when they noticed worms without the protein were "dumpy" in the dauer phase: they remained relatively short and round. Intrigued, the researchers decided to characterize the protein and its function in seam cells, the cells responsible for dauer remodeling.

"When we disrupted the DEX-1 protein, the seam cells did not remodel during dauer," Schroeder says. "Seam cells have stem cell-like properties. We usually think about stem cells as controlling cell division, but we found that these cells are actually regulating their own shape through this protein, and that has an impact on overall body shape in response to stress."

DEX-1 is an example of an extracellular matrix protein, a type that is extruded to form the mortar between cells. These proteins exist in every multicellular organism, not only keeping cells together but also facilitating interaction between cells. Not always in a good way; it turns out many extracellular matrix proteins, including a DEX-1 analogue, are associated with human diseases, such as metastatic breast cancer.

Schroeder says his group is interested in looking more closely at metastasis in cancers due to these proteins, but as a nematologist, he gets more excited about the prospect of understanding the basic biology and genetics of nematodes themselves, particularly parasitic species that affect crops.

"For many parasitic nematodes, when they're ready to enter the infective stage, they have a similar process. Many of the genes regulating the decision to go into or come out of that infective stage also regulate the decision to enter dauer," he says. "This research gives us insight into their biology and how they make these developmental decisions."

###

The article, "Epidermal remodeling in Caenorhabditis elegans dauers requires the nidogen domain protein DEX-1," is published in Genetics [DOI: 10.1534/genetics.118.301557]. Authors include Kristen Flatt, Caroline Beshers, Cagla Unal, Jennifer Cohen, Meera Sundaram, and Nathan Schroeder. The research was supported by the National Institutes of Health.

Media Contact

Lauren Quinn
ldquinn@illinois.edu
217-300-2435

 @ACESIllinois

http://aces.illinois.edu/ 

Lauren Quinn | EurekAlert!
Further information:
http://dx.doi.org/10.1534/genetics.118.301557

More articles from Life Sciences:

nachricht Study clarifies kinship of important plant group
05.08.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)
05.08.2020 | Fraunhofer-Institut für Biomedizinische Technik IBMT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>