Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precursors of genes constantly emerge "out of thin air" – but only a few survive for good

11.09.2018

Accumulating evidence suggests that new genes can arise spontaneously from previously non-coding DNA instead of through the gradual mutation of established genes. Bioinformaticians at the University of Münster are now, for the first time, studying the earliest stages in the emergence of such “genes out of thin air”, also known as de novo genes.

Accumulating evidence suggests that new genes can arise spontaneously from previously non-coding DNA instead of through the gradual mutation of established genes. Bioinformaticians at the University of Münster are now, for the first time, studying the earliest stages in the emergence of such “genes out of thin air”, also known as de novo genes.


As most of us have learned at school, organisms evolve gradually due to the accumulation of many small genetic changes known as point mutations. Over millions of years, these mutations occur in the duplicated copies of established genes, occasionally contributing useful properties of their own. For decades it was considered inconceivable that completely novel genes could emerge spontaneously.

Only very recently were there serious indications that novel protein coding genes might indeed be formed de novo from so-called non-coding DNA, i.e. in parts of the genome that do not produce proteins. Now, for the first time, a new study has examined the earliest stages in the emergence of these de novo genes.

... more about:
»Biodiversity »DNA »genes »non-coding DNA »proteins

The study – which has been published in the latest issue of the “Nature Ecology and Evolution” journal – was carried out by a team of bioinformaticians led by Prof. Erich Bornberg-Bauer from the Institute of Evolution and Biodiversity at the University of Münster.

Using computer analyses, the team compared several properties of de novo genes in mice with those in four other types of mammals: rats, kangaroo rats, humans and opossums. Based on this comparison, the researchers were able to shed light on 160 million years of evolution in mammals. They took a close look at DNA transcripts (sequences which are present in the cell as RNA templates) that contain the ORFs (Open Reading Frames) necessary for the encoding of proteins.

“Our study shows that new ORFs – in other words, the candidates for assembly instructions for new proteins – constantly emerge ‘out of nowhere’ in non-coding DNA regions,” says bioinformatician Erich Bornberg-Bauer. “But, just like their transcripts, the vast majority disappear again very quickly during the evolutionary process.”

Although only very few of these candidates actually become fully functioning genes – i.e. genes containing the assembly instructions for functioning proteins – some of the candidates are retained at random for longer periods of time, simply because of the enormous number of new transcripts being continuously produced.

“These transcripts can then be found in several lineages,” says Bornberg-Bauer. “Probably, they can augment the repertoire of existing proteins over longer periods of time and become adapted to the interaction with such established proteins.”

This means that a de novo protein can occasionally acquire a function in the organism. “This also provides us with an explanation of how fundamentally new properties can emerge in an organism,” says Bornberg-Bauer, “because this cannot be explained just by point mutations in the genetic structure.”

Financial support for the research was provided by the Human Frontier Science Program.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Erich Bornberg-Bauer

Westfälische Wilhelms-Universität Münster
Institute for Evolution and Biodiversity
Hüfferstr. 1
D 48149 Münster / Germany

Tel: + 49 251 83 21630
E-Mail: ebb@uni-muenster.de

Originalpublikation:

Jonathan F. Schmitz, Kristian K. Ullrich and Erich Bornberg-Bauer (2018): Incipient de novo genes can evolve from frozen accidents which escaped rapid transcript turnover. Nature Ecology and Evolution; Published: 10 September 2018, DOI: 10.1038/s41559-018-0639-7

Weitere Informationen:

http://bornberglab.org/ Bornberg Lab

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Further information:
https://www.uni-muenster.de/

Further reports about: Biodiversity DNA genes non-coding DNA proteins

More articles from Life Sciences:

nachricht What catches our eye
11.09.2018 | Technische Universität München

nachricht Can you evolve while being robust?
11.09.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

Im Focus: OLED integration in textiles: functional and eye-catching

Organic light-emitting diodes (OLED) are mainly known from televisions and smartphone displays. They can be used as lighting objects in car tail lights or lights. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as a partner for customer-specific OLED development and production is now presenting OLED elements that can be integrated into textiles at the Electronics System Integration Technology Conference ESTC 2018 from September 18 - 21, 2018 in Dresden at booth no. 29.

The versatile OLEDs can not only light in color, they can also be designed in any shape and even transparent or dimmable. Applied on wafer-thin foils, they are...

Im Focus: Novel 3D printed polymer lenses for X-ray microscopes: highly efficient and low cost

Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart invented a new and cost-effective method for making X-ray lenses with nanometer-sized features and excellent focusing capabilities. By using an advanced 3D printing technique, a single lens can be manufactured under a minute from polymeric materials with extremely favorable X-ray optical properties, hence the costs of prototyping and manufacturing are strongly reduced. High-throughput and high-yield manufacturing processes of such lenses are sought after world-wide, which is why the scientists have filed a patent for their invention.

X-ray microscopes are fascinating imaging tools. They uniquely combine nanometer-size resolution with a large penetration depth: X-ray microscopy or XRM is the...

Im Focus: Tilted pulses

Physicists from Konstanz produced extremely short and specifically-shaped electron pulses for materials studies in the femtosecond and attosecond range in collaboration with Munich-based institutes

Our world is basically made up of atoms and electrons. They are very small and move around very rapidly in case of processes or reactions. Although seeing...

Im Focus: Digital Twin meets Plug & Produce – Fraunhofer IPK at the IMTS in Chicago

Hannover Messe is expanding to the USA – and Fraunhofer IPK is joining in with a trendsetting exhibit. It combines fast and flexible design and application of the shopfloor IT with a digital twin, which ensures transparency even in complex production systems.

For the first time ever, Deutsche Messe organizes a Hannover Messe brand event outside of Germany – and Fraunhofer IPK is taking part.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Innovative combination of hard and soft materials improves adhesion to rough surfaces

11.09.2018 | Materials Sciences

Precursors of genes constantly emerge "out of thin air" – but only a few survive for good

11.09.2018 | Life Sciences

Fraunhofer HHI shows latest video technologies at IBC

11.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>