Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precursors of genes constantly emerge "out of thin air" – but only a few survive for good

11.09.2018

Accumulating evidence suggests that new genes can arise spontaneously from previously non-coding DNA instead of through the gradual mutation of established genes. Bioinformaticians at the University of Münster are now, for the first time, studying the earliest stages in the emergence of such “genes out of thin air”, also known as de novo genes.

Accumulating evidence suggests that new genes can arise spontaneously from previously non-coding DNA instead of through the gradual mutation of established genes. Bioinformaticians at the University of Münster are now, for the first time, studying the earliest stages in the emergence of such “genes out of thin air”, also known as de novo genes.


As most of us have learned at school, organisms evolve gradually due to the accumulation of many small genetic changes known as point mutations. Over millions of years, these mutations occur in the duplicated copies of established genes, occasionally contributing useful properties of their own. For decades it was considered inconceivable that completely novel genes could emerge spontaneously.

Only very recently were there serious indications that novel protein coding genes might indeed be formed de novo from so-called non-coding DNA, i.e. in parts of the genome that do not produce proteins. Now, for the first time, a new study has examined the earliest stages in the emergence of these de novo genes.

... more about:
»Biodiversity »DNA »genes »non-coding DNA »proteins

The study – which has been published in the latest issue of the “Nature Ecology and Evolution” journal – was carried out by a team of bioinformaticians led by Prof. Erich Bornberg-Bauer from the Institute of Evolution and Biodiversity at the University of Münster.

Using computer analyses, the team compared several properties of de novo genes in mice with those in four other types of mammals: rats, kangaroo rats, humans and opossums. Based on this comparison, the researchers were able to shed light on 160 million years of evolution in mammals. They took a close look at DNA transcripts (sequences which are present in the cell as RNA templates) that contain the ORFs (Open Reading Frames) necessary for the encoding of proteins.

“Our study shows that new ORFs – in other words, the candidates for assembly instructions for new proteins – constantly emerge ‘out of nowhere’ in non-coding DNA regions,” says bioinformatician Erich Bornberg-Bauer. “But, just like their transcripts, the vast majority disappear again very quickly during the evolutionary process.”

Although only very few of these candidates actually become fully functioning genes – i.e. genes containing the assembly instructions for functioning proteins – some of the candidates are retained at random for longer periods of time, simply because of the enormous number of new transcripts being continuously produced.

“These transcripts can then be found in several lineages,” says Bornberg-Bauer. “Probably, they can augment the repertoire of existing proteins over longer periods of time and become adapted to the interaction with such established proteins.”

This means that a de novo protein can occasionally acquire a function in the organism. “This also provides us with an explanation of how fundamentally new properties can emerge in an organism,” says Bornberg-Bauer, “because this cannot be explained just by point mutations in the genetic structure.”

Financial support for the research was provided by the Human Frontier Science Program.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Erich Bornberg-Bauer

Westfälische Wilhelms-Universität Münster
Institute for Evolution and Biodiversity
Hüfferstr. 1
D 48149 Münster / Germany

Tel: + 49 251 83 21630
E-Mail: ebb@uni-muenster.de

Originalpublikation:

Jonathan F. Schmitz, Kristian K. Ullrich and Erich Bornberg-Bauer (2018): Incipient de novo genes can evolve from frozen accidents which escaped rapid transcript turnover. Nature Ecology and Evolution; Published: 10 September 2018, DOI: 10.1038/s41559-018-0639-7

Weitere Informationen:

http://bornberglab.org/ Bornberg Lab

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Further information:
https://www.uni-muenster.de/

Further reports about: Biodiversity DNA genes non-coding DNA proteins

More articles from Life Sciences:

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

nachricht The sleep neuron in threadworms is also a stop neuron
16.09.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>