Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful drug's surprising, simple method could lead to better treatments

17.01.2012
With one simple experiment, University of Illinois chemists have debunked a widely held misconception about an often-prescribed drug.

Led by chemistry professor and Howard Hughes Medical Institute early career scientist Martin Burke, the researchers demonstrated that the top drug for treating systemic fungal infections works by simply binding to a lipid molecule essential to yeast’s physiology, a finding that could change the direction of drug development endeavors and could lead to better treatment not only for microbial infections but also for diseases caused by ion channel deficiencies.

“Dr. Burke’s elegant approach to synthesizing amphotericin B, which has been used extensively as an antifungal for more than 50 years, has now allowed him to expose its elusive mode of action,” said Miles Fabian, who oversees medicinal chemistry research at the National Institute of General Medical Sciences. The institute is part of the National Institutes of Health, which supported the work. “This work opens up avenues for improving upon current antifungals and developing novel approaches for the discovery of new agents.”

Systemic fungal infections are a problem worldwide and affect patients whose immune systems have been compromised, such as the elderly, patients treated with chemotherapy or dialysis, and those with HIV or other immune disorders. A drug called amphotericin (pronounced AM-foe-TARE-uh-sin) has been medicine’s best defense against fungal infections since its discovery in the 1950s. It effectively kills a broad spectrum of pathogenic fungi and yeast, and has eluded the resistance that has dogged other antibiotics despite its long history of use.

The downside? Amphotericin is highly toxic.
“When I was in my medical rotations, we called it ‘ampho-terrible,’ because it’s an awful medicine for patients,” said Burke, who has an M.D. in addition to a Ph.D. “But its capacity to form ion channels is fascinating. So my group asked, could we make it a better drug by making a derivative that’s less toxic but still powerful? And what could it teach us about avoiding resistance in clinical medicine and possibly even replacing missing ion channels with small molecules? All of this depends upon understanding how it works, but up until now, it’s been very enigmatic.”

While amphotericin’s efficacy is clear, the reasons for its remarkable infection-fighting ability remained uncertain. Doctors and researchers do know that amphotericin creates ion channels that permeate the cell membrane. Physicians have long assumed that this was the mechanism that killed the infection, and possibly the patient’s cells as well. This widely accepted dogma appears in many scientific publications and textbooks.

However, several studies have shown that channel formation alone may not be the killing stroke. In fact, as Burke’s group discovered, the mechanism is much simpler.

Amphotericin binds to a lipid molecule called ergosterol, prevalent in fungus and yeast cells, as the first step in forming the complexes that make ion channels. But Burke’s group found that, to kill a cell, the drug doesn’t need to create ion channels at all – it simply needs to bind up the cell’s ergosterol.

Burke’s group produced a derivative of amphotericin using a molecule synthesis method Burke pioneered called iterative cross-coupling (ICC), a way of building designer molecules using simple chemical “building blocks” called MIDA boronates joined together by one simple reaction. They created a derivative that could bind ergosterol but could not form ion channels, and tested it against the original amphotericin.

If the widely accepted model was true, and ion channel formation was the drug’s primary antifungal action, then the derivative would not be able to wipe out a yeast colony. But the ergosterol-binding, non-channel-forming derivative was almost equally potent to natural amphotericin against both of the yeast cell lines the researchers tested, once of which is highly pathogenic in humans. The researchers detailed their findings in the journal Proceedings of the National Academy of Sciences.

“The results are all consistent with the same conclusion: In contrast to half a century of prior study and the textbook-classic model, amphotericin kills yeast by simply binding ergosterol,” Burke said.

“The beauty is, because we now know this is the key mechanism, we can focus squarely on that goal. Now we can start to think about drug discovery programs targeting lipid binding.”

The researchers currently are working to synthesize a derivative that will bind to ergosterol in yeast cells, but will not bind to cholesterol in human cells, to see if that could kill an infection without harming the patient. They also hope to explore other derivatives that would target lipids in fungi, bacteria and other microbes that are not present in human cells. Attacking these lipids could be a therapeutic strategy that may defy resistance.

In addition to exploiting amphotericin’s lipid-binding properties for antimicrobial drugs, Burke and his group hope to harness its channel-creating ability to develop treatments for conditions caused by ion-channel deficiencies; for example, cystic fibrosis. These new findings suggest that the ion-channel mechanism could be decoupled from the cell-killing mechanism, thus enabling development of derivatives that could serve as “molecular prosthetics,” replacing missing proteins in cell membranes with small-molecule surrogates.

“Now we have a road map to take ampho-terrible and turn it into ampho-terrific,” Burke said.

Editor’s notes: To reach Martin Burke, call (217)244-8726; email burke@scs.illinois.edu.

The paper, “Amphotericin Primarily Kills Yeast by Simply Binding Ergosterol,” is available from the News Bureau or PNAS.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>