Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants Emit Greenhouse Gas Nitrous Oxide at Substantial Amounts

18.10.2018

Current study shows: Impact on natural climate processes greater than previously thought

Nitrous oxide, or N2O, is a greenhouse gas that affects the ozone layer and the earth‘s climate. Until now, experts believed that microbes in the soil were largely responsible for its formation. Now an interdisciplinary research team from the University of Applied Sciences Bingen and Heidelberg University have looked more closely at plants as the source. The result of the study: The earth‘s flora emits considerable amounts of nitrous oxide that contributes to the greenhouse gas effect. Unlike human-induced global warming, however, this process is part of a natural effect.


Sterile tobacco plants in the climate chamber

Photo: Steffen Greiner (Heidelberg University, COS)

Until now, climate reports like those from the UN‘s IPCC did not include plants as a significant source of nitrous oxide in the global climate budget. Yet to accurately calculate the human contribution to the greenhouse gas effect, it is essential to identify and quantify all sources of greenhouse gases – including the natural ones. The current study shows that all the plants studied emit nitrous oxide and contribute significantly to total N2O emissions.

The researchers report that based on these studies, emissions from plants could make up roughly five to ten percent of nitrous oxide in the earth‘s atmosphere. “To truly understand the role of plants in the nitrous oxide cycle and to quantify it more precisely, further studies on representative types of plants, especially trees, are needed,” stresses Prof. Dr Katharina Lenhart.

“This study was just a first step toward quantifying plant emissions of nitrous oxide and understanding the related biochemical processes,” states the researcher, a professor of botany, limnology and ecotoxicology at the University of Applied Sciences Bingen and guest scientist at Heidelberg University.

To determine the amount of N2O emissions, the researchers studied 34 different plants under controlled conditions in a closed laboratory. Among the plants were tobacco, corn, and lavender. To avoid contamination with bacteria-generated nitrous oxide, some of the experiments were conducted under sterile conditions.

All the experiments took place in the dark so that the nitrous oxide emitted could be related to plant respiration. Like humans, plants release carbon dioxide (CO2) when they breathe. The opposite and generally better known process of CO2 absorption, however, occurs only in the presence of light during photosynthesis.

“The N2O and CO2 ratio is correlated, so we were able to use the ample existing research on plant carbon dioxide emissions to calculate the amount of nitrous oxide released,” explains Prof. Lenhart.

Isotope analyses were also carried out, because all nitrous-oxide-producing processes release a nitrous oxide molecule with a typical isotope fingerprint, including plants. “By measuring the composition of the isotopes, we were able to clearly demonstrate that most of the nitrous oxide is not released by bacteria in the soil, and that it differs from all the previously known sources,” adds Prof. Dr Frank Keppler, who directs the Biogeochemistry Research Group at Heidelberg University’s Institute of Earth Sciences.

In the next phase, the researchers will verify their laboratory results in field studies and include other plant species in their investigations. They also want to explore which biochemical process contributes to the formation of nitrous oxide in plants and the role of the biosphere in nitrous oxide formation in geological history. One particularly interesting question is how increasing global temperatures affect the rate at which plants release nitrous oxide.

Dr Steffen Greiner from the Centre for Organismal Studies (COS) of Heidelberg University also contributed to the interdisciplinary research led by Prof. Lenhart and Prof. Keppler. Other cooperation partners include researchers from the Institute for Plant Ecology at the University of Gießen, the Max Planck Institute for Biogeochemistry in Jena, the Senckenberg Natural Research Society, and the Thünen Institute of Climate-Smart Agriculture in Braunschweig. The research results were published in the journal “New Phytologist”.

Contact:
Heidelberg University
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Wissenschaftliche Ansprechpartner:

Prof. Dr Katharina Lenhart
University of Applied Sciences Bingen
Phone +49 6721 409-359
k.lenhart@th-bingen.de

Prof. Dr Frank Keppler
Heidelberg University
Institute of Earth Sciences
Phone +49 6221 54-6009
frank.keppler@geow.uni-heidelberg.de

Originalpublikation:

K. Lenhart, T. Behrendt, S. Greiner, J. Steinkamp, R. Well, A. Giesemann & F. Keppler: Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. New Phytologist (2018), https://doi.org/10.1111/nph.15455

Weitere Informationen:

http://www.th-bingen.de/person/katharina-lenhart/#
http://www.geow.uni-heidelberg.de/researchgroups/keppler

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: CO2 EMISSIONS N2O Oxide carbon dioxide greenhouse nitrous oxide

More articles from Life Sciences:

nachricht Machine learning microscope adapts lighting to improve diagnosis
20.11.2019 | Duke University

nachricht The neocortex is critical for learning and memory
20.11.2019 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>