Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants' defensive responses have downstream effects on nearby ecosystems

18.03.2015

Chemical changes that occur in tree leaves after being attacked by insects and mammals can impact nearby streams, which rely on fallen plant material as a food source, report scientists from the University of Chicago Department of Ecology and Evolution. The study, published March 17 in the journal Proceedings of the Royal Society B, shows how interactions between terrestrial and aquatic ecosystems are an essential part of understanding ecological responses to climate change.

Graduate student Sara Jackrel and Timothy Wootton, PhD, professor in the Department of Ecology and Evolution, simulated herbivory, or the activity of insects eating leaves, on red alder trees in a forest on the Olympic Peninsula in Washington state.


This is a typical river reach on the Merrill & Ring Tree Farm, Olympic Peninsula, Washington.

Credit: Sara Jackrel

Their research showed caterpillars ate fewer leaves from the stressed trees than those that were left alone. Leaves from these stressed trees also decomposed much more slowly when submerged in nearby streams, and further results suggest that the trees funneled a valuable nutritional resource away from the leaves as a defensive response to animal attacks.

"Terrestrial herbivory could have innumerable effects on leaf chemistry, and our simulation had a very strong effect in streams," said Jackrel, the study's lead author. "The tree's response to herbivory had a cascading effect across an ecosystem boundary, into another trophic level entirely. The important finding was making that indirect link from a terrestrial system into an aquatic system."

Plants generate many defensive responses to being attacked by insects and other animals. Some produce tannins and compounds that are toxic or taste bad to discourage herbivores from eating them. Others may even release chemicals that attract predators for the particular insect attacking the plant.

Insects and microbe decomposers that live in streams depend on a variety of nutritionally diverse leaf litter as a food sources. They play no direct role in the interactions between trees and their herbivores, but the new study shows how the composition of those leaves is shaped by their activity,

During her fieldwork, Jackrel mimicked the activity of caterpillars by systematically punching holes in the alder leaves with an office hole punch. She also painted the leaves with methyl jasmonate, a chemical that trees release under stress, to enhance the defensive response to the hole punches. Some trees were fertilized with phosphorus, while others were not.

Jackrel then buried packages of leaves and placed others underwater in a stream to test how quickly they decomposed in both soil and water. Caterpillars were also allowed to feed on treated and untreated leaves to test their preferences.

Leaves from trees that received both fertilizer and the herbivory treatment decomposed the most slowly. Caterpillars and aquatic insects ate fewer of these leaves than those from untreated trees as well.

Nitrogen levels were also much lower in the treated leaves. Insects value nitrogen as a nutrient, and the study results suggest that trees alter nitrogen levels to deter them from eating more leaves, perhaps by storing it the trunk or roots.

Understanding how trees' defensive responses to natural herbivores impact nearby streams will help scientists better predict the effects of climate change and other human activity like logging and agriculture.

"With climate change, insect communities are going to change," Jackrel said. "So understanding fundamentally how these communities naturally affect leaf chemistry, and how that might affect stream systems, is a critical reference to have. Then we can work to predict how climate change, along with other anthropogenic changes, might be affecting aquatic systems."

###

The study, "Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function," was supported by the National Science Foundation, the U.S. Department of Education, the University of Chicago Hinds Fund and an Olympic National Resources grant.

About the University of Chicago Medicine

The University of Chicago Medicine & Biological Sciences is one of the nation's leading academic medical institutions. It comprises the Pritzker School of Medicine, a top 10 medical school in the nation; the University of Chicago Biomedical Sciences Division; and the University of Chicago Medical Center, which recently opened the Center for Care and Discovery, a $700 million specialty medical facility. Twelve Nobel Prize winners in physiology or medicine have been affiliated with the University of Chicago Medicine.

Visit our research blog at sciencelife.uchospitals.edu and our newsroom at uchospitals.edu/news.

Twitter @UChicagoMed

Facebook.com/UChicagoMed

Matt Wood | EurekAlert!

Further reports about: Ecosystem Plants activity aquatic downstream effects ecosystems herbivores herbivory insects leaves terrestrial

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>