Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parkinson's disease: iron accumulation to the point of demise

19.08.2009
RUB scientists prove the iron-containing protein complex ferritin in cerebral neurons

Possible explanation for the necrosis of dopaminergic cells

Neurons that produce the neurotransmitter dopamine are the cerebral cells that most commonly die-off in Parkinson's disease. The cells in the so-called substantia nigra, which contain the dark pigment neuromelanin, are affected. It is also known that the iron content of these cells increases during the course of Parkinson's disease.

A team of researchers from the University of Bochum working under the auspices of Prof. Katrin Marcus and in close collaboration with colleagues in Munich and Würzburg studied this process in greater depth.

They have managed to make a first-time decisive observation, namely to provide evidence of ferritin in the neuromelanin granules in the affected brain cells. Ferritin is an iron depot protein that had only been proven in the supporting cells of the brain to date, but not in neurons. The scientists have published their results in Molecular & Cellular Proteomics.

Dark cerebral matter fades in Parkinson's disease

Investigation of the human brain discloses a distinct dark discoloration of the substantia nigra and locus coeruleus within parts of the brainstem. This is due to the bluish to brown-black pigment neuromelanin, which is only present in the human brain and that of a few other mammals (primates, cows, horses, some breeds of sheep). Research into neuromelanin is particularly interesting because the substantia nigra of patients with PD fades in colour during the course of the disease. The pigment is most common in dopaminergic neurons, which mostly die-off in PD patients. Dopamine is an important neurotransmitter. Motor control is impaired if dopaminergic cells decay. This in turn results in the symptoms typical of Parkinson's disease such as resting tremor, increasing postural instability and poor coordination of general movements.

Protective effect due to the "interception" of iron

After the researchers from Bochum and Würzburg had been able to clarify the composition and production of the neuromelanin granules four years ago, they began investigating the inner life of neuromelanin granules in greater detail. The significance of the currently obtained data is that the selective necrosis of the dopaminergic neurons in the substantia nigra is accompanied by an accumulation of ferrous ions (Fe3+). The homeostasis of the iron content is evidently damaged and this intensifies as the disease progresses. Elevated quantities of free Fe3+ result - inter alia - in an increased formation of cell-damaging free radicals which ultimately leads to necrosis of the cells. Neuromelanin is capable of bonding ferrous ions (and other heavy metals). For many decades, it had been uncertain whether the cells are protected by the pigment "intercepting" ferrous ions, or whether the accumulation of the iron was actually responsible for damaging the cells. Data gained during the past few years indicates that neuromelanin primarily plays a protective role for the neurons.

Additional iron accumulation mechanism

During the current study, the scientists thus investigated whether there could be a further mechanism for the accumulation of iron in the substantia nigra over and above the direct binding of the Fe3+ to neuromelanin. For the first time, they were now able to supply evidence of ferritin in the neuromelanin granules using a combination of diverse techniques (one-dimensional SDS gel electrophoresis, targeted mass spectrometry, western blot analysis, as well as immune transmission electron microscopy). To date, this important iron depot protein had only been proven in glia but not in neurons.

New hypothesis on the development of Parkinson's disease

Prof. Katrin Marcus concludes that - in the opinion of her research team - ferritin in the neuromelanin granules is a further significant element in the homeostasis of the iron content in the substantia nigra. This first direct proof of ferritin in neuromelanin granules in dopaminergic neurons is an important step towards an improvement in the comprehension of the iron metabolism in the human substantia nigra. It moreover supplies arguments for new hypotheses concerning the mechanisms of the iron-regulated degeneration of the substantia nigra in Parkinson's disease. Currently the scientists are investigating further unclarified issues, such as how the composition of the neuromelanin granules changes with increasing age and during the course of the disease. Moreover, they are trying to elucidate the exact function of the neuromelanin in the cell, and why only the neuromelanin-containing cells in the substantia nigra die-off.

Cooperation partners and sponsors

The research work performed by Prof. Katrin Marcus, Prof. Helmut E. Meyer, Dr. Florian Tribl and Dr. Elmar Langenfeld from the Medizinisches Proteom-Center at the Ruhr University Bochum in collaboration with the Julius-Maximilian University Würzburg (Prof. Manfred Gerlach, Prof. Peter Riederer, Prof. Esther Asan, Prof. Thomas Tatschner, Prof. Gerhard Bringmann) and the Ludwig-Maximilian University Munich (Dr. Thomas Arzberger) is sponsored by the Austrian Science Academy, BrainNet Europe, the German Parkinson Association and the German Federal Ministry of Education and Research (BMBF, Programs NGFN2 and NGFNplus).

Title

Tribl F, Asan E, Arzberger T, Tatschner T, Langenfeld E, Meyer HE, Bringmann G, Riederer P, Gerlach M, Marcus K. Identification of L-ferritin in neuromelanin granules of the human substantia nigra - a targeted proteomics approach. Mol Cell Proteomics 2009; 8:1832-38, doi:10.1074/mcp.M900006-MCP200

Publication 2005: Tribl F, Gerlach M, Marcus K, Asan E, Tatschner T, Arzberger T, Meyer HE, Bringmann G, Riederer P. "Subcellular proteomics" of neuromelanin granules isolated from the human brain. Mol Cell Proteomics. 2005;4(7):945-57

Further Information

Prof. Katrin Marcus, Department of Functional Proteomics, Medical Proteomic Center at the Ruhr-University Bochum, MA 4/59a, 44780 Bochum, -Tel. 0234/32-28444, Fax: 0234/32-14554, E-Mail: katrin.marcus@rub.de

Editor: Meike Drießen

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>