Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optogenetic tool elucidated: RUB researchers explain channelrhodopsin

28.02.2012
Opening of the ion channel with light

Controlling nerve cells with the aid of light: this is made possible by optogenetics. It enables, for example, the investigation of neurobiological processes with unprecedented spatial and temporal precision. The key tool of optogenetics is the light-activated protein channelrhodopsin. Biophysicists from Bochum and Berlin have now succeeded in explaining the switching mechanism through an interdisciplinary approach. The researchers report on their findings in the “Journal of Biological Chemistry”.


The Bochum homology model predicts the structure of a channelrhodopsin so well that it has been even possible to make statements about its function. The illustration shows the prediction in comparison to the later crystal structure

Redistribution of water molecules

Until now, little has been known about the mechanism of the protein - especially about how the channel opens. However, deeper understanding is a prerequisite in order to be able to use the light-controlled protein specifically for neurobiological applications. In a new, multi-disciplinary approach, the Bochum scientists led by Prof. Dr. Klaus Gerwert (Department of Biophysics at the RUB) and their cooperation partners in Berlin have been able to shed light on the switching mechanism. The result: the light-induced change in the charge state of amino acid glutamate 90 (E90) triggers an increased penetration of water molecules, so that the protein can now purposefully conduct ions through the cell membrane.

Three methods combined

Using time-resolved infrared spectroscopy, the RUB biophysicists Jens Kuhne and Dr. Erik Freier have been able to show for the first time that the channel is opened through the deprotonation of the amino acid glutamate 90 (E90). In addition, the electrophysiological experiments of the researchers in Berlin confirm that a mutation of the amino acid leads to a change in the ion permeability of the protein. Instead of using safety goggles and lab coats, the two biophysicists Kirstin Eisenhauer and Dr. Steffen Wolf at the Department of Biophysics used supercomputers to simulate how the protonation change of the glutamate opens the channel and allows water molecules to penetrate.

Internationally preeminent

The work has attained particular distinction right now, because shortly after the Bochum pre-publication on the Internet, Japanese researchers published the three-dimensional structure of a channelrhodopsin online in “Nature”. “The structure work impressively confirms our biomolecular simulations and the key role played by the amino acid E90 in the switching of the channel”, says Prof. Klaus Gerwert. “We are therefore particularly proud to have been preeminent in this internationally competitive field.” In 2010, optogenetics was distinguished by “Nature Methods” as the “Method of the Year”. Using this method, researchers have succeeded, for example, in restoring the eyesight of blind mice.

Bibliographic record

K. Eisenhauer, J. Kuhne, E. Ritter, A. Berndt, S. Wolf, E. Freier, F. Bartl, P. Hegemann, K. Gerwert,: In channelrhodopsin-2 E90 is crucial for ion selectivity and is deprotonated during the photocycle, The Journal of Biological Chemistry, Vol. 287, Issue 9, 6904-6911, 2012, DOI: 10.1074/jbc.M111.327700

Further information

Prof. Dr. Klaus Gerwert, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität Bochum, Tel. +49 234 32 24461, gerwert@bph.rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Dissolving protein traffic jam at the entrance of mitochondria
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Producing tissue and organs through lithography
23.05.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>