Notre Dame researcher helps discover 'walking' properties of bacteria

Shrout, assistant professor of civil engineering and geological sciences and a member of the Eck Institute for Global Health, has been studying the surface motility of bacteria since 2004.

In 2008, UCLA researcher Gerard Wong suggested that an undergraduate bioengineering senior design group that he was advising track the bacterium Shrout was studying. After some interesting patterns were observed initially, Shrout collected more data to send to Wong's group and they refined their analysis to allow for identification of very specific patterns by the bacteria, including “walking.”

In a paper appearing in today's edition of the journal Science, Shrout, Wong and other researchers report on their findings.

“The significance of the work is that we show bacteria are capable of 'standing up' and moving while vertical,” Shrout said. “The analysis methodology developed by Gerard's group made this observation possible. They developed a computer program to analyze time-lapse data series, just like those showing plant development that you watched on PBS as a kid, of bacterial motion on surfaces. By tracking thousands of bacteria for minutes to hours, the stand-up walking pattern was observed and verified to occur with some frequency.”

Apart from being an extraordinary insight into the behavior of bacteria, the findings have important biomedical implications.

“The significance to medicine is that the bacterium we study, Pseudomonas aeruginosa, causes lung, skin, eye and gastrointestinal infections,” Shrout said. “Such infections are, unfortunately, the leading cause of death for individuals with Cystic Fibrosis. As we learn more about how Pseudomonas aeruginosa colonizes surfaces, perhaps we can develop better methods to treat these infections.”

Dominick Motto, who was graduated from Notre Dame in May with a degree in biology, worked with Shrout on the on the experiments used in the research analysis.

“It has been great to work with Gerard's group on this project because we have meshed multiple scientific approaches for this discovery,” Shrout said. “It also has been rewarding to integrate each level of researcher into this project: undergrad, graduate student, post-doc and professor. The ability to conduct cutting edge science while training future scientists is very rewarding.”

Media Contact

Joshua Shrout EurekAlert!

More Information:

http://www.nd.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors