Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment for brain tumors uses electrospun fiber

03.12.2019

Researchers with the University of Cincinnati used coaxial electrospinning to create a treatment for glioblastoma multiforme

A novel engineering process can deliver a safe and effective dose of medicine for brain tumors without exposing patients to toxic side effects from traditional chemotherapy.


The University of Cincinnati used coaxial electrospinning to create a fine fiber with a core of one material surrounded by a sheath of another to treat brain tumors.

Credit: Joseph Fuqua II/UC Creative Services

University of Cincinnati professor Andrew Steckl, working with researchers from Johns Hopkins University, developed a new treatment for glioblastoma multiforme, or GBM, an aggressive form of brain cancer.

Steckl's Nanoelectronics Laboratory applied an industrial fabrication process called coaxial electrospinning to form drug-containing membranes.

The treatment is implanted directly into the part of the brain where the tumor is surgically removed.

The study was published in Nature Scientific Reports

"Chemotherapy essentially is whole-body treatment. The treatment has to get through the blood-brain barrier, which means the whole-body dose you get must be much higher," Steckl said. "This can be dangerous and have toxic side-effects."

Steckl is an Ohio Eminent Scholar and professor of electrical engineering in UC's College of Engineering and Applied Science.

Coaxial electrospinning combines two or more materials into a fine fiber composed of a core of one material surrounded by a sheath of another. This fabrication process allows researchers to take advantage of the unique properties of each material to deliver a potent dose of medicine immediately or over time.

"By selecting the base materials of the fiber and the thickness of the sheath, we can control the rate at which these drugs are released," Steckl said.

The electrospun fibers can rapidly release one drug for short-term treatment such as pain relief or antibiotics while an additional drug or drugs such as chemotherapy is released over a longer period, he said.

"We can produce a very sophisticated drug-release profile," Steckl said.

The breakthrough is a continuation of work conducted by research partners and co-authors Dr. Henry Brem and Betty Tyler at Johns Hopkins University, who in 2003 developed a locally administered wafer treatment for brain tumors called Gliadel.

Unlike previous treatments, electrospun fibers provide a more uniform dose over time, said UC research associate Daewoo Han, the study's lead author.

"For the current treatment, most drugs release within a week, but our discs presented the release for up to 150 days," he said.

Glioblastoma multiforme is a common and extremely aggressive brain cancer and is responsible for more than half of all primary brain tumors, according to the American Cancer Society. Each year more than 240,000 people around the world die from brain cancer.

The electrospun fiber created for the study provided a tablet-like disk that increased the amount of medicine that could be applied, lowered the initial burst release and enhanced the sustainability of the drug release over time, the study found.

Chemotherapy using electrospun fiber improved survival rates in three separate animal trials that examined safety, toxicity, membrane degradation and efficacy.

"This represents a promising evolution for the current treatment of GBM," the study concluded.

While this study used a single drug, researchers noted that one advantage of electrospinning is the ability to dispense multiple drugs sequentially over a long-term release. The latest cancer treatments rely on a multiple-drug approach to prevent drug resistance and improve efficacy.

Steckl said the study holds promise for treatments of other types of cancer.

"Looking ahead, we are planning to investigate 'cocktail' therapy where multiple drugs for the combined treatment of difficult cancers are incorporated and released either simultaneously or sequentially from our fiber membranes," Steckl said.

Media Contact

Michael Miller
michael.miller3@uc.edu
513-556-6757

 @UofCincy

http://www.uc.edu/news 

Michael Miller | EurekAlert!
Further information:
https://www.uc.edu/news/articles/2019/12/n20877580.html
http://dx.doi.org/10.1038/s41598-019-54283-y

More articles from Life Sciences:

nachricht A window into evolution
03.12.2019 | Leibniz Institute of Plant Genetics and Crop Plant Research

nachricht A Freiburg research team deciphers how stem cells decide their identity
03.12.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Focused ultrasound may open door to Alzheimer's treatment

03.12.2019 | Medical Engineering

New treatment for brain tumors uses electrospun fiber

03.12.2019 | Life Sciences

Illuminating the path for super-resolution imaging with improved rhodamine dyes

03.12.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>