Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology helps ID aggressive early breast cancer

01.07.2016

Imaging and math combine to illuminate aggressive biomarkers in DCIS

When a woman is diagnosed with the earliest stage of breast cancer, how aggressive should her treatment be? Will the non-invasive cancer become invasive? Or is it a slow-growing variety that will likely never be harmful?


This image shows DCIS sample highlighting aggressive biomarkers.

Credit: University of Michigan Health System

Researchers at the University of Michigan developed a new technology that can identify aggressive forms of ductal carcinoma in situ, or stage 0 breast cancer, from non-aggressive varieties.

The technique combines imaging and mathematics. It's called biomarker ratio imaging microscopy, or BRIM.

"A patient with DCIS is typically treated as if she has invasive disease, which is easy to understand. When women hear breast cancer, they're petrified. And physicians are keenly concerned about outcomes as well," says study author Howard R. Petty, Ph.D., professor of ophthalmology and visual sciences and of microbiology and immunology.

"But, DCIS is not the same disease for everyone. If we can identify potentially non-aggressive lesions, perhaps those women don't need aggressive treatment."

BRIM combines traditional pathology techniques and fuses it with mathematical analysis to determine the relative levels of certain biomarkers in a tumor.

Petty and co-author Andrea J. Clark looked at biopsy samples from 23 patients with DCIS. They used fluorescence imaging, in which tumors are stained to identify key biomarkers. Each biomarker was stained a different color. The stained samples were then entered into a computer program that determines the ratio of biomarker in each pixel.

Some biomarkers are highly expressed in cancer; others have very low expression. With BRIM, researchers take the ratio of expression. This means high and low do not cancel each other out, but rather combine to form an image of improved contrast.

Using this technique, researchers could separate the DCIS patient samples into those with a lot of cancer stem cells - which are highly aggressive - and those that resembled benign tumors. They found 22 percent of the samples had low scores suggestive of very slow-growing, non-aggressive disease.

"This approach is going to be a new and powerful one. It works because we're looking at it mathematically," Petty says. The results are published in the Nature journal Scientific Reports.

Ratio imaging microscopy was used in the 1990s to look at calcium signals. Here, the researchers resurrected this technique and applied it using antibodies and biomarkers.

Biomarkers were selected based on an extensive literature search. The researchers suggest that another advantage to BRIM is that it combines multiple biomarkers, rather than relying on a single marker.

Rates of ductal carcinoma in situ have increased since screening mammography became common. Some experts believe that DCIS can become invasive breast cancer, but this has not been proven. Currently, there is not a way to stratify the disease based on aggressiveness.

The researchers suggest that in addition to preventing overtreatment, BRIM could be used to help more broadly with breast cancer treatment decisions. As the biomarker literature becomes more expansive in other cancer types, the researchers say they will expand their work to other forms of cancer.

They plan to conduct a large retrospective study correlating BRIM scores to patient outcomes.

###

This technique is not currently available in the clinic. To learn about treatment options for DCIS or invasive breast cancer, contact the U-M Cancer AnswerLine at 800-865-1125.

Funding for this study is from the Mildred E. Swanson Foundation and the National Institutes of Health grant EY007003.

Disclosure: The University of Michigan has filed for patent protection on this technology and is currently assessing options to advance it toward market.

Reference: Scientific Reports, doi: 10.1038/srep27039

Resources:

U-M Cancer AnswerLine, 800-865-1125
U-M Comprehensive Cancer Center, http://www.mcancer.org
Clinical trials at U-M, http://www.mcancer.org/clinicaltrials
mCancerTalk blog, http://uofmhealthblogs.org/cancer

Nicole Fawcett | EurekAlert!

More articles from Life Sciences:

nachricht Cohesin down-regulation drives hematopoietic stem cell aging
14.12.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Foxes in the city: citizen science helps researchers to study urban wildlife

14.12.2018 | Ecology, The Environment and Conservation

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>