Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique to identify phloem cells aids in the fight against citrus greening

04.12.2018

Fluorescent microscopy and organelle-specific dyes can help understand phloem diseases across species

Crops worldwide are increasingly vulnerable to pandemics, as diseases hitch rides on global flows of people and goods, hopping from continent to continent. Phloem diseases such as citrus greening are one particularly devastating group of plant diseases that have been wreaking economic havoc globally.


Citrus leaf parenchyma protoplast viewed under different light sources and filters after incubation in Hoechst 3342, Neutral Red, and MitoTracker Green. Each cell was viewed under brightfield microscopy (A), fluorescence microscopy for red and green fluorescence (B), and under DAPI filter for blue fluorescence (C).

Credit: Prabhjot Kaur, Pedro Gonzalez, Manjul Dutt, and Ed Etxeberria. 2018. Identification of sieve elements and companion cell protoplasts by a combination of brightfield and fluorescence microscopy. Applications in Plant Sciences 6(9): e1179.

However, these diseases can be difficult to study, as phloem cells are relatively inaccessible and difficult to isolate. In work presented in a recent issue of Applications in Plant Sciences, Dr. Ed Etxeberria and colleagues at the University of Florida Citrus Research and Education Center present a new technique for identifying phloem cells in plant tissue.

"Because of their inaccessible nature, phloem-limited diseases are virtually impossible to cure or treat in planta, and therefore, pose immense risks both in economic and biological terms.

In economic terms, mild phloem diseases can cause significant reductions in agricultural output by reducing quality and quantity of the host agricultural commodity.

In the worst cases, they can spell the end of established industries, as is the case of the citrus industry in Puerto Rico," said Dr. Etxeberria, corresponding author of the study. "In biological terms, these diseases threaten the very survival of the affected species."

In order to fight the devastation of phloem diseases, researchers must understand in detail the way these pathogens deform the plant phloem cells known as sieve elements and companion cells.

Today, many basic questions remain unanswered about how diseases like citrus greening impact these phloem cells, which are essential for plant nutrient transport. "We are interested in finding out whether the signal produced by the [citrus greening] bacteria, that directs the physiological changes in the sieve element and is mediated by the companion cells, is genetic or chemical."

As a first step in answering this question, phloem cells would have to be isolated. However, this presents a technical challenge, as phloem cells constitute less than 1% of total cells, are buried deep within plant tissues, and are interspersed with other cell types.

Existing techniques for the identification of phloem cells rely on the presence of phloem-specific proteins called forisomes. However, forisomes are only found in the phloem cells of plants in the bean family, limiting the application of this method.

The technique presented here takes advantage of the distinctive anatomy of phloem cells by using organelle-specific dyes and fluorescent microscopy. For example, phloem cells called sieve element lack a nucleus and vacuole, but possess parietal mitochondria, so these cells become apparent when tissue is stained with the organelle-specific Hoechst 3342, Neutral Red, and MitoTracker Green and visualized with a fluorescent microscope.

This method is applicable well beyond citrus, because it relies on the anatomy of phloem cells, rather than protein markers that vary from species to species. That means it could be used to understand not only citrus greening but a wide variety of phloem diseases such as cucurbit yellow vine disease, corn stunt disease, and onion yellow dwarf disease.

While studying phloem diseases is by far the most pressing application for this technique, and was the motivation for this study, identification of phloem cells could also help with the study of other botanical questions.

"Identifying phloem cells can help in other areas of phloem physiology such as characterizing the location of membrane-bound carriers or channels, their location throughout the plant, and their properties depending on their distribution in source or sink tissues," said Dr. Etxeberria.

Additionally, because it involves digestion of the cell wall, "this method can be used to study membrane properties such as ion fluxes, membrane electrical properties, and biophysics of membrane elasticity--a study not possible with intact cells."

Using established biological methods like cell wall digestion, organelle-specific staining, and fluorescent microscopy, Dr. Etxeberria and colleagues have developed a technique to accurately isolate phloem cells across plants. While this technique has wide applications, it will immediately be put into service in understanding and fighting the devastating phloem diseases causing crop failures worldwide.

Prabhjot Kaur, Pedro Gonzalez, Manjul Dutt, and Ed Etxeberria. 2018. Identification of sieve elements and companion cell protoplasts by a combination of brightfield and fluorescence microscopy. Applications in Plant Sciences 6(9): e1179. https://doi.org/10.1002/aps3.1179

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America, a nonprofit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. APPS is available as part of the Wiley Online Library.

For further information, please contact the APPS staff at apps@botany.org.

Beth Parada | EurekAlert!
Further information:
http://dx.doi.org/10.1002/aps3.1179

More articles from Life Sciences:

nachricht Researchers find new mutation in the leptin gene
24.06.2019 | Texas Biomedical Research Institute

nachricht Straight to the heart
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>