Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings on how cardiac arrhythmias develop

05.05.2015

Cardiac arrhythmias affect a high proportion of the aging population. Mitochondria are the ‘powerhouses of the cells’, and scientists in Cologne have now shown that even a few heart cells with reduced mitochondrial function are sufficient to trigger arrhythmias.

Mitochondria are cell organelles that are involved in many functions. They are considered to be the ‘powerhouses of the cells’ because they convert nutrients into energy.

They are involved in the regulation of programmed cell death, when a cell is no longer needed or even constitutes a risk to the body. Mitochondria have their own DNA (mitochondrial DNA, mtDNA), which accumulates point mutations in its sequence or loses large portions (mtDNA deletions) during the aging process.

If the number of altered mtDNA copies increases too much, there is a dramatic disruption of mitochondrial function and, as a result, of cell function. This phenomenon occurs in individual cells in many organs during the aging process, giving rise to a ‘tissue mosaic’ of a few isolated cells with mitochondrial dysfunction scattered amongst many normal cells.

Until recently it was not clear whether these few cells with defective mitochondria could be responsible for the loss of tissue and organ function associated with aging. Working in Prof. Rudolf Wiesner’s research team in Cologne, Dr. Olivier Baris and his co-workers looked at this tissue mosaic more closely in the context of cardiac arrhythmias.

Taking an experimental approach to the problem, the Cologne scientists used mice that express a mutated mitochondrial protein specifically in the heart as model organisms. The normal protein is required for proper mtDNA replication. In the clinic, the same mutation in patients leads to the accumulation of mtDNA deletions and severe neurological disease. Dr. Olivier Baris and his fellow scientists decided to investigate the heart because this organ is particularly dependent on mitochondrial energy production.

Dr. Baris: “The incidence of cardiac arrhythmias increases dramatically with age and contributes significantly to morbidity and mortality in the elderly.” Indeed, the mutated protein in the mouse heart was shown to cause the accumulation of mtDNA deletions and the development of a tissue mosaic.

Analysis of long-term electrocardiogram recordings in 18-month-old mice showed typical cardiac arrhythmias that are similar to those described in elderly people (spontaneous premature heart beats and blocks of the conduction of the electrical wave), and which intensify under stress. No such increase in arrhythmias was observed in 12-month-old mice that had three times fewer cells with mitochondrial dysfunction.

The results show promise for future new therapeutic approaches. As Dr. Baris concludes: “Our research has shown that the proportion of heart cells with impaired mitochondrial function has to exceed a threshold value in order to cause a functional disturbance of the organ.

A significant finding was that no other signs of cardiac dysfunction (increased scarring, dilatation of the heart or reduced pump function) were found in the mutated hearts.

We therefore showed that indeed the characteristic tendency towards arrhythmias in aging human hearts could be induced by the random accumulation of defective mitochondria in a few isolated cells and the resultant tissue mosaic.

The challenge of the future is to understand how altered mitochondrial function in just a few heart cells impacts the function of the entire organ. The scientists expect that it will be possible to develop new pharmacological treatment strategies for this aging-associated electrical conduction disorder in the heart – important new findings in aging research from CECAD.

Contact:
Dr. Olivier Baris
CECAD Cluster of Excellence
University of Cologne
Phone +49 221 478-7901
obaris@uni-koeln.de

Astrid Bergmeister MBA
Head of CECAD PR & Marketing
CECAD Cluster of Excellence
University of Cologne
Phone + 49 (0) 221-478 84043
astrid.bergmeister@uk-koeln.de

Weitere Informationen:

http://www.cecad.uni-koeln.de

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>