Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do neurons die in Parkinson's disease?

11.11.2011
Study of hereditary Parkinson's finds that mitochondria can't be cleared out when damaged

Current thinking about Parkinson's disease is that it's a disorder of mitochondria, the energy-producing organelles inside cells, causing neurons in the brain's substantia nigra to die or become impaired.

A study from Children's Hospital Boston now shows that genetic mutations causing a hereditary form of Parkinson's disease cause mitochondria to run amok inside the cell, leaving the cell without a brake to stop them. Findings appear in the November 11 issue of Cell.

Mitochondrial movement is often a good thing, especially in neurons, which need to get mitochondria to cells' periphery in order to fuel the axons and dendrites that send and receive signals. However, arresting this movement is equally important, says senior investigator Thomas Schwarz, PhD, of Children's F.M. Kirby Neurobiology Center, since it allows mitochondria to be quarantined and destroyed when they go bad.

"Mitochondria, when damaged, produce reactive oxygen species that are highly destructive, and can fuse with healthy mitochondria and contaminate them, too," Schwarz says. "It's the equivalent of an environmental disaster in the cell."

Studying neurons from fruit flies, rats and mice, as well as cultured human cells, Schwarz and colleagues provide the most detailed understanding to date of the effects of the gene mutations, which encode the proteins Parkin and PINK1. They demonstrate how these proteins interact with proteins responsible for mitochondrial movement -- in particular Miro, which literally hitches a molecular motor onto the organelle.

Normally, when mitochondria go bad, PINK1 tags Miro to be destroyed by Parkin and enzymes in the cell, the researchers showed. When Miro is destroyed, the motor detaches from the mitochondrion. The organelle, unable to move, can then be disposed of: The cell literally digests it.

But when either PINK1 or Parkin is mutated, this containment system fails, leaving the damaged mitochondria free to move about the cell, spewing toxic compounds and fusing to otherwise healthy mitochondria and introducing damaged components.

The study's findings are consistent with observed changes in mitochondrial distribution, transport and dynamics in other neurodegenerative diseases such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (Lou Gehrig's disease), and Charcot-Marie-Tooth disease, the researchers note.

Although the team studied a rare hereditary form of Parkinson's, the findings may shed light on what's going on in the more common sporadic form of the disease, Schwarz says.

"Whether it's clearing out damaged mitochondria, or preventing mitochondrial damage, the common thread is that there's too much damage in mitochondria in a particular brain region," he says.

While Schwarz sees potential in gene therapy to restore normal PINK1 or Parkin to neurons, he is more interested in the possibility of helping neurons flush out bad mitochondria or make enough new, healthy mitochondria to keep them viable. "We may need to do both," he says.

The study was funded by the Ellison Medical Foundation, the Hartman Foundation for Parkinson's Research, the National Institutes of Health and a LSRF Novartis Fellowship. Xinnan Wang, PhD, of the F.M. Kirby Neurobiology Center at Children's, was first author.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 11 members of the Institute of Medicine and nine members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Children's, visit: http://vectorblog.org

Erin Tornatore | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Life Sciences:

nachricht Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system
20.09.2019 | Technische Universität München

nachricht Moderately Common Plants Show Highest Relative Losses
20.09.2019 | Universität Rostock

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>