Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuronal Regeneration and the Two-Part Design of Nerves

06.06.2013
Researchers at the University of Michigan have evidence that a single gene controls both halves of nerve cells, and their research demonstrates the need to consider that design in the development of new treatments for regeneration of nerve cells.

A paper published online in PLOS Biology by U-M Life Sciences Institute faculty member Bing Ye and colleagues shows that manipulating genes of the fruit fly Drosophila to promote the growth of one part of the neuron simultaneously stunts the growth of the other part.


Credit: Xin Wang

A neuron contains two sets of protrusions of different functions: dendrites (shown in green) receive signals from other neurons or sensory stimuli, whereas the axons (shown in purple) pass signals to other neurons or muscles. Such a two-part design serves as a basis for the functioning neural networks inside of our brains, in a way that is similar to diodes in electric circuits.

Understanding this bimodal nature of neurons is important for researchers developing therapies for spinal cord injury, neurodegeneration and other nervous system diseases, Ye said.

Nerve cells look strikingly like trees, with a crown of "branches" converging at a "trunk." The branches, called dendrites, input information from other neurons into the nerve cell. The trunk, or axon, transmits the signal to the next cell.

"If you want to regenerate an axon to repair an injury, you have to take care of the other end, too," said Ye, assistant professor in the Department of Cell and Developmental Biology at the U-M Medical School.

The separation of the nerve cell into these two parts is so fundamental to neuroscience that it's known as the "neuron doctrine," but how exactly neurons create, maintain and regulate these two separate parts and functions is still largely unknown.

While the body is growing, the neuronal network grows rapidly. But nerve cells don't divide and replicate like other cells in the body (instead, a specific type of stem cell creates them). Adult nerve cells appear to no longer have the drive to grow, so the loss of neurons due to injury or neurodegeneration can be permanent.

Ye's paper highlights the bimodal nature of neurons by explaining how a kinase that promotes axon growth surprisingly has the opposite effect of impeding dendrite growth of the same cell.

In the quest to understand the fundamentals of nerve cell growth in order to stimulate regrowth after injury, scientists have identified the genes responsible for axon growth and were able to induce dramatic growth of the long "trunk" of the cell, but less attention has been given to dendrites.

There are technical reasons that studying axons is easier than studying dendrites: The bundle of axons in a nerve is easier to track under the microscope, but to get an image of dendrites would require labeling single neurons.

Ye's lab circumvented that obstacle by using Drosophila as a model. Using this simple model of the nervous system, the scientists were able to reliably label both axons and dendrites of single neurons and see what happened to nerve cells with various mutations of genes that are shared between the flies and humans.

One of the genes shared by Drosophila and people is the one that makes a protein called Dual Lucine Zipper Kinase, or DLK. As described previously by other groups, DLK is a product of the gene responsible for axon growth. Cells with more of the protein had very long axons, and those without the gene or protein had no regeneration after nerve injury. The DLK kinase seemed a promising target for therapies to regenerate nerve cells.

However, Ye's lab found that the kinase had the opposite effect on the dendrites: Lots of DLK leads to diminished dendrites.

"This in vivo evidence of bimodal control of neuronal growth calls attention to the need to look at the other side of a neuron in terms of developing new therapies," Ye said. "If we use this kinase, DLK, as a drug target for axon growth, we'll have to figure out a way to block its effect on dendrites."

Ye's co-authors on the paper were Xin Wang, Jung Hwan Kim, Mouna Bazzi and Sara Robinson from the U-M Life Sciences Institute and Catherine Collins from the Department of Molecular, Cellular and Developmental Biology at the U-M College of Literature, Science, and the Arts.

Bing Ye: www.lsi.umich.edu/facultyresearch/labs/bingye

Laura J. Williams | Newswise
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>