Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

My bonnie is over the ocean – Freshwater turtle crosses the Aegean Sea

07.04.2014

Scientists at the Senckenberg Research Institute in Dresden, together with an international team of researchers, have studied the widely distributed freshwater turtle, Mauremys rivulata. In spite of geographical barriers, the turtles are genetically very similar throughout their vast distribution range. This would indicate that that animals cross hundreds of kilometres of sea. The relevant study is published in the scientific journal “Zoologica Scripta”.

Mauremys rivulata is a turtle, no more than 24 centimetres in size, which is widely distributed in lakes and streams in the region of the Eastern Mediterranean, from southeast Europe and Greece to western Turkey and as far as Lebanon, Israel, Syria and the islands of Crete and Cyprus.


Mauremys rivulata – here in its natural habitat on the bank of a stream

© M. Vamberger


Result of the sea crossing: young Mauremys rivulata

© M. Vamberger

The wide range of the species led the research team of Prof Dr Uwe Fritz, Managing Director at Senckenberg Dresden to study this species of turtle genetically.

“Because of the many geographical barriers in the range of this freshwater turtle – especially the Aegean Sea – we assumed that there would be many genetically different populations. This was based on the consideration that there was no gene flow between the isolated distribution patches, as the sea divides the populations,” says Fritz.

The story that emerged, however, was quite a different one: Using different genetic methods, the scientists examined 340 turtle samples from a total of 63 localities across the entire region of distribution. “The astonishing thing is that even turtles living at great distances from each other display an almost identical genetic pattern, for instance, in southeast Europe and Asian Turkey” explains Fritz. This means that the turtles must have found a means to exchange their genes across large distances – and indeed over hundreds of kilometres of sea.

But how do the animals manage to live on both sides of the Aegean without developing into an individual species over time? “One idea is that the turtles were brought to the different regions by humans, which meant that the gene pool could mix constantly,” explains Melita Vamberger, lead author of the study, and adds: “Yet in contrast to other turtles, Mauremys rivulata was never popular as food, because these animals stink terribly. There is therefore no obvious reason why these turtles should have been transported in such large numbers.”

Thus, only one other – unexpected – possibility remained for the researchers: “We assume that this freshwater turtle is dispersed across the sea. It is likely that turtles are swept repeatedly from their habitats in coastal swamps into the sea by storms. They can obviously survive for a long time in the sea, long enough until they are washed onto some shoreline somewhere. And this occasional exchange is sufficient!”
In fact, some time ago a Mauremys rivulata was caught on open water near Cyprus, which would support this theory.

And whatever a turtle can do might also be a feasible option for others. “It might well be possible,” says Fritz, “that other turtle species take the route across the sea. For instance, this could also explain the weak genetic structure found throughout the widely distributed and endangered North American diamond terrapin (Malaclemys terrapin)”. This could necessitate rethinking conservation measures for this and other species.

Contact
Prof. Dr. Uwe Fritz
Senckenberg Naturhistorische
Sammlungen Dresden
Tel. +49- 351 - 795841 4326
Uwe.Fritz@senckenberg.de

Melita Vamberger
Senckenberg Naturhistorische
Sammlungen Dresden
Tel. +49- 351 795841 4328
melita.vamberger@senckenberg.de

Judith Jördens
Press Office
Senckenberg Gesellschaft für Naturforschung
Tel. +49- 69 7542 1434
pressestelle@senckenberg.de

Publication
Vamberger, M., Stuckas, H., Ayaz, D., Lymberakis, P., Široký, P. & Fritz, U. (2014). Massive transoceanic gene flow in a freshwater turtle (Testudines: Geoemydidae: Mauremys rivulata). – Zoologica Scripta. DOI: 10.1111/zsc.12055

Weitere Informationen:

http://www.senckenberg.de/presse

Judith Jördens | Senckenberg

Further reports about: Cyprus Mediterranean Senckenberg Turkey animals freshwater humans individual isolated large populations species turtles

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>