Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multicolor quantum dots aid in cancer biopsy diagnosis

07.07.2010
The tunable fluorescent nanoparticles known as quantum dots make ideal tools for distinguishing and identifying rare cancer cells in tissue biopsies, Emory and Georgia Tech scientists have demonstrated.

An article to be featured on the cover of the July 15 issue of Analytical Chemistry describes how multicolor quantum dots linked to antibodies can distinguish the Reed-Sternberg cells that are characteristic of Hodgkin's lymphoma.

"Our multicolor quantum dot staining method provides rapid detection and identification of rare malignant cells from heterogenous tissue specimens," says senior author Shuming Nie, PhD, the Wallace H. Coulter distinguished professor in the Coulter department of biomedical engineering at Georgia Tech and Emory University. "The clinical utility is not limited to Hodgkin's lymphoma but potentially could be extended to detect cancer stem cells, tumor-associated macrophages and other rare cell types."

Quantum dots are nanometer-sized semiconductor crystals that have unique chemical and physical properties due to their size and their highly compact structure. Quantum dots can be chemically linked to antibodies, which can detect molecules present on the surfaces or internal parts of cancer cells.

As a test of quantum dots' discriminatory power, the authors used four varieties at once -- white, red, green and blue – each detecting a different protein, to stain lymph node biopsies. The goal was to distinguish six Hodgkin's lymphoma cases from two other types of lymphoma and samples from two patients with benign growths in their lymph nodes.

Reed Sternberg cells have a distinctive appearance, but in lymph node tissue, they are usually surrounded by other white blood cells. The authors describe identifying them as a task like "finding a needle in a haystack."

"We're excited about this technology," says Andrew Young, MD, PhD, associate professor of pathology and laboratory medicine at Emory University School of Medicine and director of clinical laboratories at Grady Health System. "We expect it could help guide the type of treatment a cancer patient gets and that it could be used with a wider variety of tumor types."

The most reliable way to assign cell identity is to look at more than one protein, Young says. With the standard methods in most pathology labs, staining cells with four different antibodies would require four separate slides – a problem when the specimen is very small. Small diagnostic specimens are common today, because they minimize the burden on the patient. In addition, the images from multiple separate slides wouldn't depict exactly the same cells. The quantum dots allow "multiplexing": superimposing four colors on top of each other.

Hodgkin's lymphoma is usually treated with chemotherapy and radiation, and is notable among the subtypes of adult lymphoma because the survival rate is relatively high. Young says the quantum dot technique could be useful for other types of cancer, where distinguishing cancer cells based on surface or genetic markers can point oncologists towards "targeted therapies" designed for one particular type of tumor.

Shuming Nie is director and principal investigator of Emory's Center for Cancer Nanotechnology Excellence, supported by the National Cancer Institute. He is associate director for nanotechnology bioengineering at the Winship Cancer Institute of Emory University and a Georgia Cancer Coalition Scholar.

The research was supported by the National Cancer Institute.

Reference: J. Liu, S.K. Lau, V.A. Varma, B.A Kairdolf and S. Nie. Multiplexed detection of characterization of rare tumor cells in Hodgkin's lymphoma with multicolor quantum dots. Anal. Chem. DOI: 10.1021/ac101065b (online before print) 2010.

Writer: Quinn Eastman

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has a $2.5 billion budget, 17,600 employees, 2,500 full-time and 1,500 affiliated faculty, 4,700 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: http://emoryhealthblog.com - @emoryhealthsci (Twitter) - http://emoryhealthsciences.org

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>