Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Molecular switch” discovered in Parkinson’s protein

23.01.2014
In one variant of Parkinson’s disease, the enzyme LRRK2 plays a central role.

Scientists at the University of Kassel have now discovered a mechanism that controls the activity of LRRK2. This opens up new approaches for the development of drugs to counter the disease, which until now is incurable.

Following Alzheimer’s, Parkinson’s disease is the most frequently occurring neuro-degenerative illness. It is estimated that approximately 7 million people suffer from the disease worldwide. A portion of these cases have a hereditary basis and are caused by mutations in specific genes.

These so-called familial Parkinson’s variants occur with varying degrees of frequency in different ethnic groups; certain mutations are particularly widespread in Italy and Spain, for example. Mutations of a protein called LRRK2 are seen as the most frequent cause of inherited Parkinson’s disease.

A research group with scientists from Kassel University has now discovered the “molecular switch” that controls the activity of this protein. “Our results can show ways to develop new drugs to regulate the activity of this protein and thus provide new approaches for the treatment of inherited Parkinson’s disease,” explains Prof. Dr. Friedrich W. Herberg, head of the Department of Biochemistry at Kassel University. “It may also be possible to derive approaches for the treatment of other variants of Parkinson’s from these results.”

The protein LRRK2 is also called “dardarin” from the Basque term “dardara” which means “to tremble”. In human cells, the protein has a mediating function as it delivers phosphates to other proteins. Dardarin has a special and until now not fully clarified role in certain cells of the midbrain which produce the neurotransmitter dopamine. These cells in the midbrain die in persons suffering from Parkinson’s. The resulting lack of dopamine leads to the well-known Parkinson’s symptoms such as muscle tremors, depression or the loss of the sense of smell.

The Kassel researchers have investigated individual areas of the enzyme dardarin very closely. “Proteins are made up of smaller building blocks – amino acids. We were able to determine that in dardarin mutations, which are taken to be responsible for inherited Parkinson’s, the phosphate supply is disturbed in an area around the amino acid 1441,” explains Dipl. Biol. Kathrin Muda, one of the authors of a study that has now appeared in the journal “Proceedings of the National Academy of Science”. “In particular, we found that an additional protein called a 14-3-3 protein can bind in the area 1441 and thus have an effect on the activity of dardarin. In the mutated variants the binding at the dardarin enzyme is disturbed and the activity of dardarin is no longer correctly regulated.” How this then results in the dying off of cells in the middle brain is not yet known. “If a way is found to substitute the binding with 14-3-3 through another mechanism that takes the place of the mutated dardarin variants, then we will have taken a big step in the development of anti-Parkinson’s drugs,” says Muda.

In cooperation with scientists from Tübingen University, from the Helmholtz Center Munich and the German Cancer Research Center Heidelberg, the Kassel researchers make use of so-called mass spectrometry, a process for the weighing of atoms and molecules. Through a comparison of the weight of normal and mutated LRRK2 protein particles, it was possible to draw conclusions about the phosphate supply process in the cells.

One of the focal points of the working group at Kassel University in their research is investigations of protein kinase A, one of the enzymes that is involved as a mediator in many processes in human cells, as for instance with the phosphate supply of LRRK2. In addition to Herberg and Muda, the Kassel scientists Dr. Daniela Bertinetti and Dipl. Biol. Jennifer Sarah Hermann as well as Dr. Frank Gesellchen from Glasgow were also involved in the research efforts. The Biochemistry Department of Kassel University is part of a consortium for research of human proteins (www.affinomics.org). The study received support from the EU, the Otto Braun Fund and the foundation of the actor Michael J. Fox, a sufferer of Parkinson’s disease, among other sources.

Picture of Dipl. Biol. Kathrin Muda (Foto: Uni Kassel):
www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2014/01Muda.jpg
Picture of Prof. Dr. Friedrich W. Herberg (Foto: Uni Kassel):
www.uni-kassel.de/uni/fileadmin/datas/uni/presse/anhaenge/2014/02Herberg.jpg
Link to the study: www.pnas.org/content/early/2013/12/17/1312701111.abstract
Contact:
Prof. Dr. Friedrich W. Herberg
University of Kassel
Department of Biochemistry
Tel.: +49 561 804-4511
E-Mail: herberg@uni-kassel.de
Dipl. Biol. Kathrin Muda
University of Kassel
Department of Biochemistry
Tel.: +49 561 804-4479
E-Mail: kathrinmuda@uni-kassel.de

Sebastian Mense | idw
Further information:
http://www.uni-kassel.de
http://www.uni-kassel.de/uni/nc/universitaet/nachrichten/article/uni-kassel-molekularer-schalter-bei-parkinson-protein-entdeckt.html

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>