Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019

Whether in potato salad or with chips: egg-based mayonnaise is used in a variety of dishes. Milk mayonnaise is unusual, but it can do much more. Scientists led by Prof. Thomas Vilgis of the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now investigated how their microscopic properties and the feeling they leave in the mouth - the so-called texture - are related. They were able to prove that there were connections between the oil content and the hardness. They were also able to change milk mayonnaise by heat in such a way that it had a different gelatinous texture with the same ingredients.

Milk mayonnaise can also be made at home simply by mixing oil with milk using a mixer. At the molecular level, the two emulsifiers casein and whey play an important role here: they ensure that oil can dissolve well in the milk, which consists mainly of water.


Small oil droplets are formed in the milk mayonnaise, the size and arrangement of these droplets being largely responsible for the consistency of the mayonnaise.

© MPI-P

Whey, for example, is a molecule that is present in raw milk in a folded or crumpled state. When a milk-oil mixture is whipped with a mixer, this molecule unfolds and can form a boundary layer around the oil, embedding small oil droplets in the aqueous milk. The result is a mayonnaise.

The size of these oil droplets determines significantly how creamy the mayonnaise feels in the mouth at the end. "We were able to show that the size of the droplets is directly related to the mixing ratio between oil and milk," said Thomas Vilgis, group leader of the "Food Science" group in Prof. Kurt Kremer's department.

"Size and number have a direct influence on how freely a single oil droplet can move or how strongly it is trapped between other droplets.”

Smaller droplets can be much closer together. So if you look at only one droplet, it is trapped by other, closely adjacent droplets - a kind of cage is formed. This makes it increasingly difficult for the oil droplet to move. As a result, the mayonnaise becomes stiffer.

Only with sufficient force on the individual drops - as it is exercised e.g. with the tongue with the meal - the droplets can free themselves from their cage and begin to flow against each other: The originally stiff mayonnaise becomes creamy. These processes can be observed directly in the laboratory using microscopy with simultaneous shearing, i.e. mechanical stress - so-called "rheo-optics".

"We were able to show that a minimum oil content of 68% is required for a solid mayonnaise, the creamiest being with 73% oil," says Vilgis. "If you want to stabilize the mayonnaise even more, you can heat it to 65 - 70 degrees.”

When the mayonnaise is heated, the whey proteins surrounding the oil droplets form free binding sites that connect with neighbouring whey proteins - similar to puzzle pieces that join together with other puzzle pieces to form a picture. In the process, the oil droplets are fixed in a protein net.

According to Vilgis, the mass produced in this way has the texture of a soft, creamy yet gelled pudding rather than that of mayonnaise, but still consists of the same ingredients.

The scientists have now published their results in the scientific journal "Food".

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Vilgis
Phone: 0+49 6131 379-143
Mail: thomas.vilgis@mpip-mainz.mpg.de

Originalpublikation:

Katja Braun, Andreas Hanewald, and Thomas A. Vilgis
Milk Emulsions: Structure and Stability
Foods 2019, 8(10), 483
DOI: https://dx.doi.org/10.3390/foods8100483

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung
Further information:
http://www.mpip-mainz.mpg.de

More articles from Life Sciences:

nachricht Identifying the blind spots of soil biodiversity
04.08.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht AI & single-cell genomics
04.08.2020 | Helmholtz Zentrum München - German Research Center for Environmental Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>