Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modern Genetics Vs. Ancient Frog-killing Fungus: Round One

15.10.2008
Scientists at the University of Idaho currently are involved in a CSI-like investigation of a killer known to have been running rampant for the past decade. But the killer’s name can’t be found on the FBI’s Most Wanted list. Instead, it’s on the minds of ecologists on every continent in the world.

Its name is Batrachochytrium dendrobatidis (Bd). It is a “chytrid” fungus that lives on keratin, a type of protein found in the skin of amphibians, and is particularly deadly for certain species of frogs. A summary of key findings from the 2004 Global Amphibian Assessment states that 43 percent of all frog species are declining in population, with less than 1 percent showing increases. Although there are many reasons for frog decline, including climate change and habitat loss, Bd seriously is affecting a growing number of species.

“This fungus is really bizarre,” said Erica Bree Rosenblum, assistant professor of biological sciences at the University of Idaho and lead author of the study published this week in the Proceedings of the National Academy of Sciences (PNAS). “It’s a member of an group of ancient fungi that are at least a half billion years old. But it only recently began killing amphibians and unequivocally is responsible for a lot of the catastrophic frog die-offs during the past decade.”

Previous studies have shown that once Bd is introduced to a habitat, up to 50 percent of amphibian species and 80 percent of individuals may die within one year. The fungus has been studied for the past decade, yet scientists still do not know much about how Bd kills its host.

However, Rosenblum’s new paper brings scientists one step closer to solving the mystery. The study uses some of the most advanced genetic technology available in an attempt to understand how the fungus works at the most basic level. It identifies several gene families for future study, including one strong candidate that may be a key element in the killing process.

Because the fungus is so ancient, it differs wildly from most species scientists study, and many of its genes have unknown functions. To combat these unknowns, Rosenblum and her colleagues sequenced Bd’s entire genome and compared the expression of genes in two phases of the fungus’s life - the zoospore and sporangia stages.

The zoospore stage is the earliest form of the fungus when it is just a single cell swimming around looking for a host on which to grow. Once it embeds itself into an amphibian’s skin, it grows into a more complex form called the sporangia stage. In this stage, Bd grows on the keratin in the frog’s skin, creating more zoospores to spread the disease and often killing the host.

By looking at which genes are turned on when the fungus actively is destroying the skin, but are turned off when the fungus is doing little more than swimming around, scientists hoped to find candidates for genes responsible for both spreading the fungus and killing the frogs.

“We care about the zoospores because that’s the stage it is swimming around and finding frogs to infect,” said Rosenblum. “And we care about the sporangia stage because that’s when Bd actually is killing the frogs.”

The study flags many genes as potentially important, but Rosenblum identifies one family as particularly interesting. The family of genes in question, known as fungalysin metallopeptidase, has only one or few representative in similar fungi that do not kill frogs. But in this deadly fungus, genes in the family appear 29 times. Additionally, the genes generally are turned on when the fungus is infecting frogs, but turned off in the zoospore stage.

Although this gene family is an excellent candidate for the pathogen’s killing ability, it is not certain. Discovering for sure which genes raise or lower the fungi’s killing ability is a long process, partly because the fungus is so far removed from other organisms in the evolutionary tree.

“This fungus is strange and different, partly because it is so ancient,” said Rosenblum. “One of the really amazing and wonderful things about this genetic technology is that we can take something we don’t know anything about, sequence its whole genome, look at what each gene is doing in different life stages, and learn a tremendous amount about the organism.”

Rosenblum and her team will continue their quest to stop Bd from killing off frog species in several ways. They currently are comparing active genes in Bd grown on frog skin to Bd grown in a test tube without exposure to keratin. Also, they plan to sequence genomes from different strains of Bd that kill less efficiently, or other, similar fungi that don’t kill amphibians at all.

They also will study the parasite from the other side of the coin – the frog’s point of view. By comparing different species of frogs, some of which are not killed by Bd, they hope to discover what genes make different species more or less susceptible to the fungus.

“The strength of these studies is the collaboration of ecologists and disease biologists,” said Rosenblum. “We are not just choosing one factor to study. Looking at absolutely every gene in the genome is now a financially and practically feasible thing to do.”

Rosenblum’s research is featured in the October 13-17 edition of PNAS Online Early Edition, article #08-04173. Read it online at http://www.pnas.org/early/recent

Ken Kingery | Newswise Science News
Further information:
http://www.uidaho.edu
http://www.pnas.org/early/recent

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>